Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611232

ABSTRACT

This study investigates the use of low molecular weight poly(ethylene glycol) (PEG) as a plasticizer for poly(lactic acid) (PLA). PLA/PEG blend films were prepared using the solvent casting method with varying mixing ratios. The films were analyzed using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and dynamic rheological analysis. The results indicate that the addition of PEG as a plasticizer affects the thermal and mechanical properties of the PLA/PEG blend films. The study found that the glass transition and cold crystallization temperatures decreased with increasing PEG content up to 20 wt%, while the crystallinity and crystallization rate increased. The blends with up to 20 wt% PEG were miscible, but phase separation occurred when the plasticizer content was increased to 30 wt%. Subsequently, amorphous samples of neat PLA and PLA plasticized with 10 wt% of PEG underwent annealing at various temperatures (Ta = 80-120 °C) for durations ta of 1 and 24 h. The samples were then analyzed using DSC and DMA. The addition of PEG to PLA altered the content of α' and α crystalline forms compared to neat PLA at a given (Ta; ta) and favored the formation of a mixture of α' and α crystals. The crystallinity achieved upon annealing increased with increasing Ta or ta and with the incorporation of PEG.

2.
Molecules ; 28(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38067482

ABSTRACT

Electron Beam (EB) irradiation was utilized to decontaminate model systems of industrial polymers that contain a brominated flame retardant (BFR). Acrylonitrile-butadiene-styrene (ABS) and Polycarbonate (PC) are two types of polymers commonly found in Waste Electrical and Electronic Equipment (WEEE). In this study, these polymers were exposed to EB irradiation to degrade DecaBromoDiphenylEther (DBDE), one of the most toxic BFRs. Fourier-transform infrared spectroscopy analysis demonstrated an 87% degradation rate of DBDE for the ABS-DBDE system and 91% for the PC-DBDE system following an 1800 kGy irradiation dose. Thermal analysis using Differential Scanning Calorimetry revealed the presence of crosslinking in ABS and a minor reduction in the glass transition temperature of PC after EB processing. Polymers exhibited thermal stability after photolysis, as indicated by thermogravimetric analysis. In summary, EB irradiation had no impact on the overall thermal properties of both polymers. High-resolution mass spectrometry analysis has confirmed the debromination of both ABS-DBDE and PC-DBDE systems. Therefore, the results obtained are promising and could offer an alternative approach for removing bromine and other additives from plastic E-waste.

3.
Gels ; 9(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38131932

ABSTRACT

Water pollution caused by dyes poses a significant threat to life on earth. Poly(acrylamide-co-acrylic acid) hydrogels are widely used to treat wastewater from various pollutants. This study aims to examine the removal of malachite green (MG), a harmful and persistent dye that could cause extensive environmental damage, from an aqueous solution by adjusting the initial concentration of acrylamide (AM) and the degree of copolymer crosslinking. The copolymer hydrogels efficiently eliminate MG in a brief timeframe. The most successful hydrogel accomplished a removal rate exceeding 96%. The copolymer of 4 wt % 1,6-hexanediol diacrylate and a concentration of 100 mg/mL AM was effective. The degree of swelling was affected by crosslinking density as expected, with low crosslinking ratios resulting in significant swelling and high ratios resulting in less swelling. To evaluate the results, a docking approach was used which presented three crosslinked models: low, medium, and high. The copolymer-dye hydrogel system displayed robust hydrogen bonding interactions, as confirmed by the high quantities of both donors and acceptors. It was determined that MG contains six rotatable bonds, enabling it to adapt and interact with the copolymer chains. The dye and copolymer enhance H-bond formation by providing two hydrogen bond donors and 16 hydrogen bond acceptors, respectively. Through capitalizing on cationic and anionic effects, the ionic MG/copolymer hydrogel system improves retention efficiency by enhancing attraction between opposing charges. It is interesting to note that the synthesized copolymer is able to remove 96.4% of MG from aqueous media within one hour of contact time.

4.
Waste Manag Res ; : 734242X231219626, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38158834

ABSTRACT

In order to protect human health and the environment, several regulations have been introduced in recent years to reduce or even eliminate the use of some brominated flame retardants (BFRs) due to their toxicity, persistence and bioaccumulation. Dispersions of these BFRs in polymers are widely used for various applications. In this report, four different brominated molecules, decabromodiphenyl ether (DBDE), hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and tris(tribromophenoxy)triazine (TTBPT), were dispersed in the solid matrix of an industrial polymer, high impact polystyrene (HIPS). The possibility of degradation of these BFRs within HIPS under UV-visible irradiation in ambient air was investigated. The degradation kinetics of DBDE and HBCDD were followed by Fourier transform infrared spectroscopy (FTIR) and high-resolution two-step laser mass spectrometry (L2MS). The thermal properties of the pristine and irradiated polymer matrix were monitored by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), which showed that these properties were globally preserved. Volatile photoproducts from the degradation of DBDE, DBDPE and TTBPT were identified by headspace gas chromatography/mass spectrometry analysis. Under the chosen experimental conditions, BFRs underwent rapid degradation after a few seconds of irradiation, with conversions exceeding 50% for HIPS/DBDE and HIPS/HBCDD systems.

5.
Polymers (Basel) ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37835983

ABSTRACT

The thermal degradation behavior of Poly(2-ethyl hexyl hcrylate) (Poly(2-EHA)), blended with a commercially available nematic liquid crystal (LC) mixture, was investigated by thermal gravimetric analysis (TGA). Different heating rates, ranging from 5 to 200 °C/min, were applied under an inert atmosphere. Based on the TGA results, activation energies (Eα) at different conversion rates (α) were determined using three integral isoconversion methods: Flynn-Wall-Ozawa (FWO), Tang, and Kissinger-Akahira-Sunose (KAS). It can be noticed that the global evolution of these activation energies was the same for the three models. The coefficient of determination R2 presented values generally higher than 0.97. Using these models, the Eα value for the LC remains constant at 64 kJ/mol for all conversions rates. For the polymer Poly(2-EHA), applying the Tang and FWO models, the activation energy presents a variation ranging from 80 kJ/mol, for conversion α = 0.1, to 170 kJ/mol, for α = 0.9. For the third model (KAS), this energy varies between 80 and 220 kJ/mol in the same range of α.

6.
Molecules ; 28(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985461

ABSTRACT

Recycling of plastic waste from electrical and electronic equipment (EEE), containing brominated flame retardants (BFR) remains difficult due to the increasingly stringent regulations on their handling and recovery. This report deals with photodegradation in a low-pressure reactor applying UV-visible light on Decabromodiphenyl ether (DBDE or BDE-209) randomly dispersed in commercially available Poly(acrylonitrile-butadiene-styrene) (ABS) and Poly(carbonate) (PC). The aim of this study is to investigate the possibility of decomposing a BFR in plastic waste from EEE while maintaining the specifications of the polymeric materials in order to allow for their recycling. The photodegradation of the extracted BFR was monitored using infrared spectroscopy and gas chromatography coupled with mass spectroscopy. DBDE underwent rapid photodegradation during the first minutes of exposure to UV-visible light and reached degradation yields superior to 90% after 15 min of irradiation. The evaluation of polymer properties (ABS and PC) after irradiation revealed superficial crosslinking effects, which were slightly accelerated in the presence of DBDE. However, the use of a low-pressure reactor avoids large photooxidation and allowed to maintain the thermal and structural properties of the virgin polymers.

7.
Waste Manag Res ; 41(1): 182-194, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35876087

ABSTRACT

Polychlorinated biphenyls (PCBs) were broadly applied worldwide as electrical insulators in transformers and power capacitors, due to their high dielectric constant and non-flammability. They were often added to mineral oils (MOs) and used as dielectric fluids, which are nowadays classified as hazardous waste. Indeed, the Stockholm Convention aims to eliminate the use of equipment with PCB content greater than 0.005 wt-% (=50 ppm) by 2025. Accurate identification and quantification of small traces of PCBs contained in MO thus represent a great analytical challenge. To achieve this goal, a simple, cost-effective and fast chromatographic process was developed to separate PCBs from MO, allowing to obtain reliable data to determine the concentration of PCBs, reduced to 2-3 ppm. Experimental and analytical methods, such as thin layer chromatography, column chromatography as well as gas chromatography coupled with mass spectroscopy, were applied to acquire a high level of qualitative and quantitative determination of PCBs in transformer MOs.


Subject(s)
Polychlorinated Biphenyls , Polychlorinated Biphenyls/chemistry , Mineral Oil , Electric Power Supplies
8.
Polymers (Basel) ; 14(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36433151

ABSTRACT

This investigation reports on the thermomechanical properties of Poly-tripropyleneglycoldiacrylate (Poly-TPGDA)/liquid crystal (LC) blends, developed via free radical polymerization processes, which are induced by Electron Beam (EB) and Ultraviolet (UV) radiation. The EB-cured Poly-TPGDA network exhibits a higher glass transition temperature (Tg), a higher tensile storage, and Young moduli than the corresponding UV-cured sample, indicating a lower elasticity and a shorter distance between the two adjacent crosslinking points. Above Tg of Poly-TPGDA/LC blends, the LC behaves as a plasticizing agent, whereas, for EB-cured networks, at temperatures below Tg, the LC shows a strong temperature dependence on the storage tensile modulus: the LC reinforces the polymer due to the presence of nano-sized phase separated glassy LC domains, confirmed by electron microscopy observations. In the case of the UV-cured TPGDA/LC system, the plasticizing effect of the LC remains dominant in both the whole composition and the temperature ranges explored. The rubber elasticity and Tg of Poly-TPGDA/LC films were investigated using mechanical measurements.

9.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36234441

ABSTRACT

A clay-based TiO2 nanocomposite material was synthesized by a facile method, to investigate its structure and photocatalytic efficiency. The supported TiO2 nanoparticles were generated using a sol-gel method, and subsequently, mixed with a suspension of sepiolite. The material was recovered in powder form (Mc-80) and then calcined to properly arrange the crystal lattice of the TiO2 particles for use in heterogeneous photocatalysis (Mc-80-500). A powder X-ray diffractogram of Mc-80-500 revealed a dispersion of anatase and rutile phase TiO2 particles on the clay surface, exhibiting a size in the order of 4-8 nm. TEM images of Mc-80-500 confirmed the presence of isolated TiO2 beads on the surface of the fibrous sepiolite. The specific surface area of Mc-80-500 was larger than that of raw sepiolite and that of free TiO2 nanoparticles. Mc-80-500 was found to be more efficient in heterogeneous photocatalysis compared to other TiO2 materials based on sepiolite. Total depollution of a reactive dye (Orange G) was achieved after 1 h irradiation time, which is relatively quick compared to previous reports. The photocatalyst material can be washed with distilled water without chemical additives or calcination, and can be reused several times for photocatalysis, without loss of efficiency.

10.
Gels ; 8(3)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35323269

ABSTRACT

The discharge of untreated wastewater, often contaminated by harmful substances, such as industrially used dyes, can provoke environmental and health risks. Among various techniques, the adsorption of dyes, using three-dimensional (3D) networks consisting of hydrophilic polymers (hydrogels), represents a low-cost, clean, and efficient remediation method. Three industrially used dyes, Methylene Blue, Eosin, and Rose Bengal, were selected as models of pollutants. Poly(acrylamide) (poly(AM)) and poly(acrylamide-co-acrylic acid) (poly(AM-co-AA)) networks were chosen as adsorbent materials (hydrogels). These polymers were synthesized by crosslinking the photopolymerization of their respective monomer(s) in an aqueous medium under exposure to UV light. Experimental adsorption measurements revealed substantially higher dye uptakes for poly(AM-co-AA) compared to poly(AM) hydrogels. In this report, a theoretical model based on docking simulations was applied to analyze the conformation of polymers and pollutants in order to investigate some aspects of the adsorption process. In particular, hydrogen and halogen interactions were studied. The presence of strong hydrogen bonding plays a crucial role in the retention of dyes, whereas halogen bonding has a small or negligible effect on adsorption. An evaluation of binding energies allowed us to obtain information about the degree of affinity between polymers and dyes. The number of rotatable bonds in the copolymer exceeds those of poly(AM),meaning that poly(AM-co-AA) is revealed to be more suitable for obtaining a high retention rate for pollutants.

11.
Molecules ; 26(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066236

ABSTRACT

In the present work, the dielectric properties of recycled liquid crystals (LCs) (non-purified, purified, and doped with diamond nanoparticles at 0.05, 0.1, and 0.2 wt%) were investigated. The studied LC mixtures were obtained from industrial recycling of end-of-life LC displays presenting mainly nematic phases. Dielectric measurements were carried out at room temperature on a frequency range from 0.1 to 106 Hz using an impedance analyzer. The amplitude of the oscillating voltage was fixed at 1 V using cells with homogeneous and homeotropic alignments. Results show that the dielectric anisotropy of all purified samples presents positive values and decreases after the addition of diamond nanoparticles to the LC mixtures. DC conductivity values were obtained by applying the universal law of dielectric response proposed by Jonscher. In addition, conductivity of the doped LC mixtures is lower than that of the undoped and non-purified LC.

12.
Ultrason Sonochem ; 40(Pt A): 929-936, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28946505

ABSTRACT

In this report, indium-tin-oxide (ITO)-layer extraction from end-of-life (EOL) Liquid Crystal Displays (LCDs) was discussed by sulfuric acid leaching with simultaneous application of ultrasonication on the ITO-side of glass/ITO panels, exhibiting various dimensions. Applying this technique presents several advantages compared to the traditional leaching process such as fast and controllable kinetics, high extraction yield of indium and tin, selective recovery of these two metals possible, and the opportunity to recycle the neat glass separately avoiding additional separation processes. ITO-dissolution kinetics from EOL LCD panels were investigated as function of leaching time and acidity of sulfuric acid. At a temperature of 60°C, a nearly quantitative indium yield was obtained using an acid concentration of 18mol/L by simultaneous application of ultrasonication, whereas only 70% were recovered in the absence of ultrasound. Results from ICP-AES agreed well with SEM/BSE observations demonstrating the high efficiency of the ultrasound assisted process since only 3-4min were required to obtain maximum ITO recovery.

13.
Mater Sci Eng C Mater Biol Appl ; 57: 133-46, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26354248

ABSTRACT

The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions.


Subject(s)
Bicuspid/chemistry , Electrons , Tooth/chemistry , Tooth/radiation effects , Ultraviolet Rays , Water/chemistry , Adolescent , Dental Enamel/chemistry , Dentin/chemistry , Dose-Response Relationship, Radiation , Female , Humans , Male , Radiation Dosage , Wettability/radiation effects , Young Adult
14.
Soft Matter ; 4(6): 1237-1241, 2008 May 14.
Article in English | MEDLINE | ID: mdl-32907267

ABSTRACT

Dielectric spectroscopy has been applied to investigate the dynamic behaviour of a ferroelectric liquid crystal in the smectic C* and smectic A phases confined in gel matrices of a fibre like (1D) or platelet like (2D) structure. These gel matrices were obtained from semicarbazide or bis-acylurea derivatives, which self assemble because of their H-bonding motif. The confinement strongly influences the magnitude of the spontaneous polarization and the collective fluctuations of the director detected as the Goldstone-mode. It is thus possible to detect gelation by dielectric spectroscopy. By this method it was possible to follow the destruction and restoration of the gel structure induced by the photochemical trans-cis isomerisation.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(1 Pt 1): 011706, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11800706

ABSTRACT

This paper deals with the thermal properties of systems made of the difunctional monomer 1,6-hexanedioldiacrylate (HDDA) and the low-molecular-weight liquid crystal E7. Experimental phase diagrams of uv-cured and uncured solutions of HDDA/E7 systems are established with a polarized optical microscope and a differential scanning calorimeter and the data analyzed within a theoretical formalism that combines the Flory-Huggins model of isotropic mixing and the Maier-Saupe model of nematic order. Ultraviolet-curing samples with a difunctional monomer such as HDDA leads to a crosslinked polymer network and consequently an elastic contribution to the free energy is introduced according to the Flory-Rehner theory of rubber elasticity. The amount of liquid crystal segregated is evaluated to assess the efficiency of the phase separation mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...