Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(31): 4636-4639, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36987978

ABSTRACT

The synthesis and characterization of a series of Mo(IV) bis-ß-diketonate (Rdiket, R = Me, tBu, Ph) dichloride (RMoIVCl2) and bistriflate (RMoIV(OTf)2) complexes are reported. All complexes are characterized in solid and solution state by XRD and 1H NMR spectroscopy. We demonstrate that the bistriflate complexes constitute highly active catalysts for allylic substitution reactions.

2.
Angew Chem Int Ed Engl ; 61(47): e202211749, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36152009

ABSTRACT

Reaction of the imidazolium-substituted iphosphate-diide, (Ipr)2 C2 P2 (IDP), with GeCl2 ⋅ dioxane and KBArF24 [(BarF24 )- =tetrakis[(3,5-trifluoromethyl)phenyl]borate)] afforded the dicationic spherical-aromatic nido-cluster [Ge(η4 -IDP)]2+ ([1]2+ ) (Ipr=1,3-bis(2,6-diisopropylphenyl)imidazolium-2-ylidene). This complex is a rare heavy analogue of the elusive pyramidane [C(η4 -C4 H4 )]. [1]2+ undergoes two reversible one-electron reductions, which yield the radical cation [2]⋅+ and the neutral GeII species 3. Both [2]⋅+ and 3 rearrange in solution forming the 2D aromatic and planar imidazolium-substituted digermolide [4]2+ and germole-diide 5, respectively. Both planar species can be oxidized back to [1]2+ using AgSbF6 . These redox-isomerizations correspond to the fundamental transformation of a 3D aromatic cluster into a 2D aromatic ring compound upon reduction and vice versa. The mechanism of these reactions was elucidated using DFT calculations and cyclic voltammetry experiments.

3.
Nature ; 607(7919): 499-506, 2022 07.
Article in English | MEDLINE | ID: mdl-35859199

ABSTRACT

Transition metal hydrides (M-H) are ubiquitous intermediates in a wide range of enzymatic processes and catalytic reactions, playing a central role in H+/H2 interconversion1, the reduction of CO2 to formic acid (HCOOH)2 and in hydrogenation reactions. The facile formation of M-H is a critical challenge to address to further improve the energy efficiency of these reactions. Specifically, the easy electrochemical generation of M-H using mild proton sources is key to enable high selectivity versus competitive CO and H2 formation in the CO2 electroreduction to HCOOH, the highest value-added CO2 reduction product3. Here we introduce a strategy for electrocatalytic M-H generation using concerted proton-electron transfer (CPET) mediators. As a proof of principle, the combination of a series of CPET mediators with the CO2 electroreduction catalyst [MnI(bpy)(CO)3Br] (bpy = 2,2'-bipyridine) was investigated, probing the reversal of the product selectivity from CO to HCOOH to evaluate the efficiency of the manganese hydride (Mn-H) generation step. We demonstrate the formation of the Mn-H species by in situ spectroscopic techniques and determine the thermodynamic boundary conditions for this mechanism to occur. A synthetic iron-sulfur cluster is identified as the best CPET mediator for the system, enabling the preparation of a benchmark catalytic system for HCOOH generation.


Subject(s)
Catalysis , Coordination Complexes , Electrochemistry , Electron Transport , Protons , Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Coordination Complexes/chemistry , Electrons , Formates/chemistry , Iron/chemistry , Oxidation-Reduction , Sulfur/chemistry , Thermodynamics
4.
JACS Au ; 1(10): 1601-1611, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34723263

ABSTRACT

Well-defined fullerene-PEG conjugates, C60-PEG (1) and two C70-PEG (2 and 3 with the addition sites on ab-[6,6] and cc-[6,6]-junctions), were prepared from their corresponding Prato monoadduct precursors. The resulting highly water-soluble fullerene-PEG conjugates 1-3 were evaluated for their DNA-cleaving activities and reactive oxygen species (ROS) generation under visible light irradiation. Unexpectedly, photoinduced cleavage of DNA by C60-PEG 1 was much higher than that by C70-PEG 2 and 3 with higher absorption intensity, especially in the presence of an electron donor (NADH). The preference of photoinduced ROS generation from fullerene-PEG conjugates 1-3 via the type II (energy transfer) or the type I (electron transfer) photoreaction was found to be dependent on the fullerene core (between C60 and C70) and functionalization pattern of C70 (between 2 and 3). This was clearly supported by the electron transfer rate obtained from cyclic voltammetry data and computationally estimated relative rate of each step of the type II and the type I reactions, with the finding that type II energy transfer reactions occurred in the inverted Marcus regime while type I electron transfer reactions proceeded in the normal Marcus regime. This finding on the disparity in the pathways of photoinduced reactions (type I versus type II) provides insights into the behavior of photosensitizers in water and the design of photodynamic therapy drugs.

5.
Chemistry ; 27(12): 3892-3928, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-32914919

ABSTRACT

Dinitrogen (N2 ) is the most abundant gas in Earth's atmosphere, but its inertness hinders its use as a nitrogen source in the biosphere and in industry. Efficient catalysts are hence required to ov. ercome the high kinetic barriers associated to N2 transformation. In that respect, molecular complexes have demonstrated strong potential to mediate N2 functionalization reactions under mild conditions while providing a straightforward understanding of the reaction mechanisms. This Review emphasizes the strategies for N2 reduction and functionalization using molecular transition metal and actinide complexes according to their proposed reaction mechanisms, distinguishing complexes inducing cleavage of the N≡N bond before (dissociative mechanism) or concomitantly with functionalization (associative mechanism). We present here the main examples of stoichiometric and catalytic N2 functionalization reactions following these strategies.

6.
Angew Chem Int Ed Engl ; 58(22): 7299-7303, 2019 05 27.
Article in English | MEDLINE | ID: mdl-30844125

ABSTRACT

Potassium acyltrifluoroborates (KATs) were prepared through copper(I)-catalyzed borylation of aldehydes and subsequent oxidation. This synthetic route is characterized by the wide range of aldehydes accessible, favorable step economy, mild reaction conditions, and tolerance of various functional groups, and it enables the facile generation of a range of KATs, for example, bearing halide, sulfide, acetal, or ester moieties. Moreover, this method was applied to the three-step synthesis of various α-amino acid analogues that bear a KAT moiety on the C-terminus by using naturally occurring amino acids as the starting material.

SELECTION OF CITATIONS
SEARCH DETAIL
...