Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 135: 212733, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35929198

ABSTRACT

A nanocomposite bone scaffold was fabricated from pullulan, a natural extracellular polysaccharide. Pullulan (PULL) was blended with polyvinylpyrrolidone (PVP), and a nano-platform with ball-stick morphology, Ag-Silica Janus particles (Ag-Silica JPs), which were utilized to fabricate nanocomposite scaffold with enhanced mechanical and biological properties. The Ag-Silica JPs were synthesized via a one-step sol-gel method and used to obtain synergistic properties of silver and silica's antibacterial and bioactive effects, respectively. The synthesized Ag-Silica JPs were characterized by means of FE-SEM, DLS, and EDS. The PULL/PVP scaffolds containing Ag-Silica JPs, fabricated by the freeze-drying method, were evaluated by SEM, EDS, FTIR, XRD, ICP and biological analysis, including antibacterial activity, bioactivity, cell viability and cell culture tests. It was noted that increasing Ag-Silica JPs amounts to an optimum level (1% w/w) led to an improvement in compressive modulus and strength of nanocomposite scaffold, reaching 1.03 ± 0.48 MPa and 3.27 ± 0.18, respectively. Scaffolds incorporating Ag-Silica JPs also showed favorable antibacterial activity. The investigations through apatite forming ability of scaffolds in SBF indicated spherical apatite precipitates. Furthermore, the cell viability test proved the outstanding biocompatibility of nanocomposite scaffolds (more than 90%) confirmed by cell culture tests showing that increment of Ag-Silica JPs amounts led to better adhesion, proliferation, ALP activity and mineralization of MG-63 cells.


Subject(s)
Multifunctional Nanoparticles , Nanocomposites , Anti-Bacterial Agents/pharmacology , Apatites , Glucans , Silicon Dioxide , Tissue Engineering/methods , Tissue Scaffolds
2.
Curr Drug Deliv ; 14(8): 1170-1177, 2017.
Article in English | MEDLINE | ID: mdl-28530536

ABSTRACT

BACKGROUND: It is well known that the properties of polymers can be altered by exposure to γ- ray. γ-irradiation has been used as a sterilization method for polymeric drug delivery devices, and its drug release profile must not be significantly changed. In this study, the effect of γ-irradiation on the release profile of leuprolide acetate from PLGA-based in situ forming system was investigated. METHODS: Poly(lactide-co-glycolide) (PLGA) was dissolved in N-methylpyrrolidinone (NMP) and irradiated with a total dose of 8 kGy γ-ray emitted by a 60Co source. Then, leuprolide acetate was added to the polymer solution. PLGA-based in situ forming systems were prepared by injecting some specific amount of prepared solution into a buffer phosphate pH 7.4 at 37 °C. The effects of γ-ray on drug release profiles, morphology of matrices and thermal properties as well as stability of polymer were evaluated. RESULTS: The results showed that γ-irradiation causes a decrease in glass transition temperature (Tg) of PLGA from 43.4 to 38.1°C. A reduction in molecular weight of PLGA by about 17.8 % was found as consequence of radiolytic degradation. The morphological studies of PLGA matrices confirmed that the irradiated sample had higher porosity than the non-irradiated sample. It is found that the amount of released leuprolide acetate from irradiated matrix was increased by about 1.6 times after 33 days compared to the nonirradiated ones. In vitro drug release experimental data were fitted using the Gallagher- Corrigan model which indicated that diffusion and degradation were the predominant mechanisms of drug release. CONCLUSION: Accordingly, leuprolide acetate was released faster from the irradiated matrix compared to the non- irradiated matrix.


Subject(s)
Gamma Rays , Leuprolide/chemistry , Polyglactin 910/chemistry , Drug Delivery Systems , Pyrrolidinones/chemistry , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...