Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Dis Travel Med Vaccines ; 9(1): 5, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36922890

ABSTRACT

BACKGROUND: Dengue virus (DENV) infection is a global economic and public health concern, particularly in tropical and subtropical countries where it is endemic. Saudi Arabia has seen an increase in DENV infections, especially in the western and southwestern regions. This study aims to investigate the genetic variants of DENV-2 that were circulating during a serious outbreak in Jazan region in 2019. METHODS: A total of 482 serum samples collected during 2019 from Jazan region were tested with reverse transcription-polymerase chain reaction (RT-PCR) to detect and classify DENV; positive samples underwent sequencing and bioinformatics analyses. RESULTS: Out of 294 positive samples, type-specific RT-PCR identified 58.8% as DENV-2 but could not identify 41.2%. Based on sequencing and bioinformatics analyses, the samples tested PCR positive in the first round but PCR negative in the second round were found to be imported genetic variant of DENV-2. The identified DENV-2 imported variant showed similarities to DENV-2 sequences reported in Malaysia, Singapore, Korea and China. The results revealed the imported genetic variant of DENV-2 was circulating in Jazan region that was highly prevalent and it was likely a major factor in this outbreak. CONCLUSIONS: The emergence of imported DENV variants is a serious challenge for the dengue fever surveillance and control programmes in endemic areas. Therefore, further investigations and continuous surveillance of existing and new viral strains in the region are warranted.

2.
Pathogens ; 11(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35631007

ABSTRACT

The conventional morphological characterization of mosquito species remains heavily used for species identification in Jazan, Saudi Arabia. It requires substantial expertise and time, as well as having difficulty in confirming identity of morphologically similar species. Therefore, to establish a reliable and accurate identification system that can be applied to understanding spatial distribution of local mosquito species from the Jazan region, DNA barcoding was explored as an integrated tool for mosquito species identification. In this study, 44 adult mosquito specimens were analyzed, which contain 16 species belong to three genera of potential mosquito disease vectors (Aedes, Anopheles, and Culex). The specimens were collected from the Jazan region located in southwest Saudi Arabia. These included old and preserved mosquito voucher specimens. In addition, we assessed the genetic distance based on the generated mitochondrial partial COI DNA barcodes to detect cryptic diversity across these taxa. Nine mosquito species belonging to three genera were successfully barcoded and submitted to GenBank, namely: Aedes aegypti, Aedes caspius, Aedes vexans, Aedes vittatus, Anopheles arabiensis, Culex pipiens, Culex quinquefasciatus, Culex sitiens, and Culex tritaeniorhynchus. Of these nine species, Aedes vexans, Aedes vittatus, Culex sitiens, and Culex tritaeniorhynchus were registered in GenBank for the first time from Saudi Arabia. The DNA barcodes generated a 100% match to known barcodes of these mosquito species, that also matched with the morphological identification. Ae. vexans was found to be either a case of cryptic species (subspecies) or a new species from the region. However, more research has to be conducted to prove the latter. This study directly contributes to the development of a molecular reference library of mosquito species from the Jazan region and Saudi Arabia. The library is essential for confirmation of species in support of existing mosquito surveillance and control programmes.

SELECTION OF CITATIONS
SEARCH DETAIL
...