Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 1711, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36720913

ABSTRACT

We have previously shown that neoadjuvant chemotherapy can induce the degradation of tumour ribosomal RNA (rRNA) in patients with advanced breast cancer, a phenomenon we termed "RNA disruption". Extensive tumour RNA disruption during chemotherapy was associated with a post-treatment pathological complete response and improved disease-free survival. The RNA disruption assay (RDA), which quantifies this phenomenon, is now being evaluated for its clinical utility in a large multinational clinical trial. However, it remains unclear if RNA disruption (i) is manifested across many tumour and non-tumour cell types, (ii) can occur in response to cell stress, and (iii) is associated with tumour cell death. In this study, we show that RNA disruption is induced by several mechanistically distinct chemotherapy agents and report that this phenomenon is observed in response to oxidative stress, endoplasmic reticulum (ER) stress, protein translation inhibition and nutrient/growth factor limitation. We further show that RNA disruption is dose- and time-dependent, and occurs in both tumourigenic and non-tumourigenic cell types. Northern blotting experiments suggest that the rRNA fragments generated during RNA disruption stem (at least in part) from the 28S rRNA. Moreover, we demonstrate that RNA disruption is reproducibly associated with three robust biomarkers of cell death: strongly reduced cell numbers, lost cell replicative capacity, and the generation of cells with a subG1 DNA content. Thus, our findings indicate that RNA disruption is a widespread phenomenon exhibited in mammalian cells under stress, and that high RNA disruption is associated with the onset of cell death.


Subject(s)
RNA, Ribosomal , RNA , Animals , Humans , RNA, Ribosomal/genetics , RNA, Neoplasm , Ribosomes , Cell Death/genetics , Mammals
2.
Sci Rep ; 10(1): 8671, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457334

ABSTRACT

Conventional drug sensitivity assays used to screen prospective anti-cancer agents for cytotoxicity monitor biological processes associated with active growth and proliferation, used as proxies of cell viability. However, these assays are unable to distinguish between growth-arrested (but otherwise viable) cells and non-viable/dead cells. As a result, compounds selected based on the results of these assays may only be cytostatic, halting or slowing tumour progression temporarily, without tumour eradication. Because agents capable of killing tumour cells (cytotoxic drugs) are likely the most promising in the clinic, there is a need for drug sensitivity assays that reliably identify cytotoxic compounds that induce cell death. We recently developed a drug sensitivity assay, called the RNA disruption assay (RDA), which measures a phenomenon associated with tumour cell death. In this study, we sought to compare our assay's performance to that of current commonly used drug sensitivity assays (i.e, the clonogenic, the cell counting kit-8 and the Trypan blue exclusion assays). We found that RNA disruption occurred almost exclusively when total cell numbers decreased (cytotoxic concentrations), with little to no signal detected until cells had lost viability. In contrast, conventional assays detected a decrease in their respective drug sensitivity parameters despite cells retaining their viability, as assessed using a recovery assay. We also found that the RDA can differentiate between drug-sensitive and -resistant cells, and that it can identify agents capable of circumventing drug resistance. Taken together, our study suggests that the RDA is a superior drug discovery tool, providing a unique assessment of cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery/methods , Drug Screening Assays, Antitumor/methods , Ovarian Neoplasms/drug therapy , RNA/analysis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Female , Humans , Ovarian Neoplasms/genetics , Prospective Studies
3.
BMC Cancer ; 16: 146, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26911141

ABSTRACT

BACKGROUND: Cellular stressors and apoptosis-inducing agents have been shown to induce ribosomal RNA (rRNA) degradation in eukaryotic cells. Recently, RNA degradation in vivo was observed in patients with locally advanced breast cancer, where mid-treatment tumor RNA degradation was associated with complete tumor destruction and enhanced patient survival. However, it is not clear how widespread chemotherapy induced "RNA disruption" is, the extent to which it is associated with drug response or what the underlying mechanisms are. METHODS: Ovarian (A2780, CaOV3) and breast (MDA-MB-231, MCF-7, BT474, SKBR3) cancer cell lines were treated with several cytotoxic chemotherapy drugs and total RNA was isolated. RNA was also prepared from docetaxel resistant A2780DXL and carboplatin resistant A2780CBN cells following drug exposure. Disruption of RNA was analyzed by capillary electrophoresis. Northern blotting was performed using probes complementary to the 28S and 18S rRNA to determine the origins of degradation bands. Apoptosis activation was assessed by flow cytometric monitoring of annexin-V and propidium iodide (PI) binding to cells and by measuring caspase-3 activation. The link between apoptosis and RNA degradation (disruption) was investigated using a caspase-3 inhibitor. RESULTS: All chemotherapy drugs tested were capable of inducing similar RNA disruption patterns. Docetaxel treatment of the resistant A2780DXL cells and carboplatin treatment of the A2780CBN cells did not result in RNA disruption. Northern blotting indicated that two RNA disruption bands were derived from the 3'-end of the 28S rRNA. Annexin-V and PI staining of docetaxel treated cells, along with assessment of caspase-3 activation, showed concurrent initiation of apoptosis and RNA disruption, while inhibition of caspase-3 activity significantly reduced RNA disruption. CONCLUSIONS: Supporting the in vivo evidence, our results demonstrate that RNA disruption is induced by multiple chemotherapy agents in cell lines from different tissues and is associated with drug response. Although present, the link between apoptosis and RNA disruption is not completely understood. Evaluation of RNA disruption is thus proposed as a novel and effective biomarker to assess response to chemotherapy drugs in vitro and in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/genetics , Ovarian Neoplasms/genetics , RNA Stability/drug effects , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 28S/chemistry , Apoptosis , Breast Neoplasms/drug therapy , Carboplatin/pharmacology , Caspase 3/metabolism , Cell Line, Tumor , Docetaxel , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Female , Humans , MCF-7 Cells , Ovarian Neoplasms/drug therapy , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Taxoids/pharmacology
4.
Gene ; 580(1): 26-36, 2016 Apr 10.
Article in English | MEDLINE | ID: mdl-26784654

ABSTRACT

BACKGROUND: Expression and function of the two RNA binding proteins and regulators of alternative splicing, RBM5 and RBM10, have largely been studied in human tissue and cell lines. The objective of the study described herein was to examine their expression in mouse tissue, in order to lay the framework for comprehensive functional studies using mouse models. METHODS: All RNA variants of Rbm5 and Rbm10 were examined in a range of normal primary mouse tissues. RNA and protein were examined in differentiating C2C12 myoblasts and in denervated and dystonin-deficient mouse skeletal muscle. RESULTS: All Rbm5 and Rbm10 variants examined were expressed in all mouse tissues and cell lines. In general, Rbm5 and Rbm10 RNA expression was higher in brain than in skin. RNA expression levels were more varied between cardiac and skeletal muscle, depending on the splice variant: for instance, Rbm10v1 RNA was higher in skeletal than cardiac muscle, whereas Rbm10v3 RNA was higher in cardiac than skeletal muscle. In mouse brain, cardiac and skeletal muscle, RNA encoding an approximately 17kDa potential paralogue of a small human RBM10 isoform was detected, and the protein observed in myoblasts and myotubes. Expression of Rbm5 and Rbm10 RNA remained constant during C2C12 myogenesis, but protein levels significantly decreased. In two muscle disease models, neither Rbm10 nor Rbm5 showed significant transcriptional changes, although significant specific alternative splicing changes of Rbm5 pre-mRNA were observed. Increased RBM10 protein levels were observed following denervation. CONCLUSIONS: The varied co-transcriptional and post-transcriptional regulation aspects of Rbm5 and Rbm10 expression associated with mouse tissues, myogenesis and muscle disease states suggest that a mouse model would be an interesting and useful model in which to study comprehensive functional aspects of RBM5 and RBM10.


Subject(s)
Alternative Splicing/genetics , Gene Expression Regulation/genetics , Protein Isoforms/genetics , RNA-Binding Proteins/genetics , Animals , Carrier Proteins/genetics , Cell Line , Cytoskeletal Proteins/genetics , Dystonin , Gene Expression/genetics , Mice , Muscle Development/genetics , Muscle, Skeletal/metabolism , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/genetics , Polymerase Chain Reaction , Protein Isoforms/biosynthesis , RNA-Binding Proteins/biosynthesis , Rats , Transcription, Genetic/genetics
5.
Mol Biotechnol ; 56(4): 329-39, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24146429

ABSTRACT

Skeletal muscle differentiation occurs during muscle development and regeneration. To initiate and maintain the differentiated state, a multitude of gene expression changes occur. Accurate assessment of these differentiation-related gene expression changes requires good quality template, but more specifically, appropriate internal controls for normalization. Two cell line-based models used for in vitro analyses of muscle differentiation incorporate mouse C2C12 and rat H9c2 cells. In this study, we set out to identify the most appropriate controls for mRNA expression normalization during C2C12 and H9c2 differentiation. We assessed the expression profiles of Actb, Gapdh, Hprt, Rps12 and Tbp during C2C12 differentiation and of Gapdh and Rps12 during H9c2 differentiation. Using NormFinder, we validated the stability of the genes individually and of the geometric mean generated from different gene combinations. We verified our results using Myogenin. Our study demonstrates that using the geometric mean of a combination of specific reference genes for normalization provides a platform for more precise test gene expression assessment during myoblast differentiation than using the absolute expression value of an individual gene and reinforces the necessity of reference gene validation.


Subject(s)
Cell Differentiation , Muscle, Skeletal/growth & development , Animals , Cell Line , Gene Expression Regulation, Developmental , Mice , Rats , Real-Time Polymerase Chain Reaction
6.
Chin Med J (Engl) ; 125(13): 2378-81, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22882865

ABSTRACT

BACKGROUND: We were interested in determining how the tumor suppressor gene RBM5 is regulated in lung cancers. Previous studies suggested that the gene expression is related to histological subtype and smoking exposure, since in small cell lung cancers the RBM5 gene is deleted whereas in non-small cell lung carcinomas (NSCLC) RBM5 expression is reduced. Of particular interest was the recent finding that in lung adenocarcinomas, a histological subtype of NSCLC, smoking exposure correlated with mutational activity in the transforming growth factor alpha (TGF-a) signaling pathway. Lung adenocarcinomas from smokers were associated with activating KRAS mutations, whereas lung adenocarcinomas from never-smokers were associated with activating epidermal growth factor receptor (EGFR) mutations. We hypothesized that inhibition of RBM5 in lung adenocarcinomas is achieved indirectly via these activating mutations. The objective of the research described herein was to determine if EGFR activation and RBM5 expression are negatively correlated. METHODS: EGFR expression in the lung adenocarcinoma cell line NCI-H1975 was inhibited using small interfering RNA. RBM5 expression was examined by real-time quantitative polymerase chain reaction and Western blotting. RESULTS: Reduced EGFR expression did not correlate with any change in RBM5 expression at either the RNA or protein level. CONCLUSION: These results suggest that RBM5 expression is not directly regulated by EGFR in non-smoker related lung adenocarinomas, and that some other mechanism operates to inhibit either the expression or function of this potential tumour suppressor in lung cancers that retain the RBM5 gene.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , ErbB Receptors/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma of Lung , Blotting, Western , Cell Cycle Proteins/genetics , Cell Line , DNA-Binding Proteins/genetics , ErbB Receptors/genetics , Humans , Lung Neoplasms/metabolism , RNA Interference , RNA-Binding Proteins/genetics , Real-Time Polymerase Chain Reaction , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...