Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Biomembr ; 1866(5): 184311, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38570122

ABSTRACT

The acylated pore-forming Repeats in ToXin (RTX) cytolysins α-hemolysin (HlyA) and adenylate cyclase toxin (CyaA) preferentially bind to ß2 integrins of myeloid leukocytes but can also promiscuously bind and permeabilize cells lacking the ß2 integrins. We constructed a HlyA1-563/CyaA860-1706 chimera that was acylated either by the toxin-activating acyltransferase CyaC, using sixteen carbon-long (C16) acyls, or by the HlyC acyltransferase using fourteen carbon-long (C14) acyls. Cytolysin assays with the C16- or C14-acylated HlyA/CyaA chimeric toxin revealed that the RTX domain of CyaA can functionally replace the RTX domain of HlyA only if it is modified by C16-acyls on the Lys983 residue of CyaA. The C16-monoacylated HlyA/CyaA chimera was as pore-forming and cytolytic as native HlyA, whereas the C14-acylated chimera exhibited very low pore-forming activity. Hence, the capacity of the RTX domain of CyaA to support the insertion of the N-terminal pore-forming domain into the target cell membrane, and promote formation of toxin pores, strictly depends on the modification of the Lys983 residue by an acyl chain of adapted length.

2.
J Biol Chem ; 299(9): 105150, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37567473

ABSTRACT

Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.

3.
J Biol Chem ; 299(8): 104978, 2023 08.
Article in English | MEDLINE | ID: mdl-37390987

ABSTRACT

The acylated Repeats in ToXins (RTX) leukotoxins, the adenylate cyclase toxin (CyaA) or α-hemolysin (HlyA), bind ß2 integrins of leukocytes but also penetrate cells lacking these receptors. We show that the indoles of conserved tryptophans in the acylated segments, W876 of CyaA and W579 of HlyA, are crucial for ß2 integrin-independent membrane penetration. Substitutions of W876 by aliphatic or aromatic residues did not affect acylation, folding, or the activities of CyaA W876L/F/Y variants on cells expressing high amounts of the ß2 integrin CR3. However, toxin activity of CyaA W876L/F/Y on cells lacking CR3 was strongly impaired. Similarly, a W579L substitution selectively reduced HlyA W579L cytotoxicity towards cells lacking ß2 integrins. Intriguingly, the W876L/F/Y substitutions increased the thermal stability (Tm) of CyaA by 4 to 8 °C but locally enhanced the accessibility to deuteration of the hydrophobic segment and of the interface of the two acylated loops. W876Q substitution (showing no increase in Tm), or combination of W876F with a cavity-filling V822M substitution (this combination decreasing the Tm closer to that of CyaA), yielded a milder defect of toxin activity on erythrocytes lacking CR3. Furthermore, the activity of CyaA on erythrocytes was also selectively impaired when the interaction of the pyrrolidine of P848 with the indole of W876 was ablated. Hence, the bulky indoles of residues W876 of CyaA, or W579 of HlyA, rule the local positioning of the acylated loops and enable a membrane-penetrating conformation in the absence of RTX toxin docking onto the cell membrane by ß2 integrins.


Subject(s)
Adenylate Cyclase Toxin , CD18 Antigens , Tryptophan , Adenylate Cyclase Toxin/chemistry , Adenylate Cyclase Toxin/genetics , Adenylate Cyclase Toxin/metabolism , Bordetella pertussis , CD18 Antigens/genetics , CD18 Antigens/metabolism , Cell Membrane/metabolism , Erythrocytes/metabolism , Tryptophan/chemistry , Tryptophan/genetics , Tryptophan/metabolism , Conserved Sequence
4.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769101

ABSTRACT

The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) that catalyzes the conversion of intracellular ATP to cAMP and through its signaling annihilates the bactericidal activities of host sentinel phagocytes. In parallel, CyaA permeabilizes host cells by the formation of cation-selective membrane pores that account for the hemolytic activity of CyaA. The pore-forming activity contributes to the overall cytotoxic effect of CyaA in vitro, and it has previously been proposed to synergize with the cAMP-elevating activity in conferring full virulence on B. pertussis in the mouse model of pneumonic infection. CyaA primarily targets myeloid phagocytes through binding of their complement receptor 3 (CR3, integrin αMß2, or CD11b/CD18). However, with a reduced efficacy, the toxin can promiscuously penetrate and permeabilize the cell membrane of a variety of non-myeloid cells that lack CR3 on the cell surface, including airway epithelial cells or erythrocytes, and detectably intoxicates them by cAMP. Here, we used CyaA variants with strongly and selectively enhanced or reduced pore-forming activity that, at the same time, exhibited a full capacity to elevate cAMP concentrations in both CR3-expressing and CR3-non-expressing target cells. Using B. pertussis mutants secreting such CyaA variants, we show that a selective enhancement of the cell-permeabilizing activity of CyaA does not increase the overall virulence and lethality of pneumonic B. pertussis infection of mice any further. In turn, a reduction of the cell-permeabilizing activity of CyaA did not reduce B. pertussis virulence any importantly. These results suggest that the phagocyte-paralyzing cAMP-elevating capacity of CyaA prevails over the cell-permeabilizing activity of CyaA that appears to play an auxiliary role in the biological activity of the CyaA toxin in the course of B. pertussis infections in vivo.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/pathogenicity , Whooping Cough/metabolism , Animals , Bordetella pertussis/physiology , Cell Membrane Permeability , Cyclic AMP/metabolism , Female , Host-Pathogen Interactions , Humans , Mice , Mice, Inbred BALB C , Phagocytes/metabolism , Phagocytes/microbiology , Sheep , Virulence , Whooping Cough/microbiology , Whooping Cough/pathology
5.
Sci Rep ; 11(1): 19814, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615931

ABSTRACT

Pore-forming repeats in toxins (RTX) are key virulence factors of many Gram-negative pathogens. We have recently shown that the aromatic side chain of the conserved tyrosine residue 940 within the acylated segment of the RTX adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) plays a key role in target cell membrane interaction of the toxin. Therefore, we used a truncated CyaA-derived RTX719 construct to analyze the impact of Y940 substitutions on functional folding of the acylated segment of CyaA. Size exclusion chromatography combined with CD spectroscopy revealed that replacement of the aromatic side chain of Y940 by the side chains of alanine or proline residues disrupted the calcium-dependent folding of RTX719 and led to self-aggregation of the otherwise soluble and monomeric protein. Intriguingly, corresponding alanine substitutions of the conserved Y642, Y643 and Y639 residues in the homologous RtxA, HlyA and ApxIA hemolysins from Kingella kingae, Escherichia coli and Actinobacillus pleuropneumoniae, affected the membrane insertion, pore-forming (hemolytic) and cytotoxic capacities of these toxins only marginally. Activities of these toxins were impaired only upon replacement of the conserved tyrosines  by proline residues. It appears, hence, that the critical role of the aromatic side chain of the Y940 residue is highly specific for the functional folding of the acylated domain of CyaA and determines its capacity to penetrate target cell membrane.


Subject(s)
Adenylate Cyclase Toxin/genetics , Bordetella Infections/microbiology , Bordetella bronchiseptica , Bordetella pertussis , Animals , Bordetella bronchiseptica/genetics , Bordetella bronchiseptica/metabolism , Bordetella pertussis/genetics , Bordetella pertussis/metabolism , Cell Membrane/metabolism , Female , Hemolysis , Humans , Mice , Mice, Inbred BALB C , THP-1 Cells
6.
J Biol Chem ; 297(1): 100833, 2021 07.
Article in English | MEDLINE | ID: mdl-34051233

ABSTRACT

The whooping cough agent Bordetella pertussis secretes an adenylate cyclase toxin (CyaA) that through its large carboxy-proximal Repeat-in-ToXin (RTX) domain binds the complement receptor 3 (CR3). The RTX domain consists of five blocks (I-V) of characteristic glycine and aspartate-rich nonapeptides that fold into five Ca2+-loaded parallel ß-rolls. Previous work indicated that the CR3-binding structure comprises the interface of ß-rolls II and III. To test if further portions of the RTX domain contribute to CR3 binding, we generated a construct with the RTX block II/III interface (CyaA residues 1132-1294) linked directly to the C-terminal block V fragment bearing the folding scaffold (CyaA residues 1562-1681). Despite deletion of 267 internal residues of the RTX domain, the Ca2+-driven folding of the hybrid block III/V ß-roll still supported formation of the CR3-binding structure at the interface of ß-rolls II and III. Moreover, upon stabilization by N- and C-terminal flanking segments, the block III/V hybrid-comprising constructs competed with CyaA for CR3 binding and induced formation of CyaA toxin-neutralizing antibodies in mice. Finally, a truncated CyaAΔ1295-1561 toxin bound and penetrated erythrocytes and CR3-expressing cells, showing that the deleted portions of RTX blocks III, IV, and V (residues 1295-1561) were dispensable for CR3 binding and for toxin translocation across the target cell membrane. This suggests that almost a half of the RTX domain of CyaA is not involved in target cell interaction and rather serves the purpose of toxin secretion.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/pathogenicity , Macrophage-1 Antigen/chemistry , Macrophage-1 Antigen/metabolism , Acylation , Amino Acid Sequence , Animals , Antibodies, Neutralizing/metabolism , CHO Cells , Calcium/metabolism , Cricetulus , Epitopes/metabolism , Humans , Protein Binding , Protein Domains , Protein Folding , Structure-Activity Relationship , THP-1 Cells
7.
Vaccines (Basel) ; 8(4)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228165

ABSTRACT

Bordetella pertussis whole-cell vaccines (wP) caused a spectacular drop of global pertussis incidence, but since the replacement of wP with acellular pertussis vaccines (aP), pertussis has resurged in developed countries within 7 to 12 years of the change from wP to aP. In the mouse infection model, we examined whether addition of further protective antigens into the aP vaccine, such as type 2 and type 3 fimbriae (FIM2/3) with outer membrane lipooligosaccharide (LOS) and/or of the adenylate cyclase toxoid (dACT), which elicits antibodies neutralizing the CyaA toxin, could enhance the capacity of the aP vaccine to prevent colonization of the nasal mucosa by B. pertussis. The addition of the toxoid and of the opsonizing antibody-inducing agglutinogens modestly enhanced the already high capacity of intraperitoneally-administered aP vaccine to elicit sterilizing immunity, protecting mouse lungs from B. pertussis infection. At the same time, irrespective of FIM2/3 with LOS and dACT addition, the aP vaccination ablated the natural capacity of BALB/c mice to clear B. pertussis infection from the nasal cavity. While wP or sham-vaccinated animals cleared the nasal infection with similar kinetics within 7 weeks, administration of the aP vaccine promoted persistent colonization of mouse nasal mucosa by B. pertussis.

8.
J Biol Chem ; 295(28): 9349-9365, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32393579

ABSTRACT

The Bordetella adenylate cyclase toxin-hemolysin (CyaA) and the α-hemolysin (HlyA) of Escherichia coli belong to the family of cytolytic pore-forming Repeats in ToXin (RTX) cytotoxins. HlyA preferentially binds the αLß2 integrin LFA-1 (CD11a/CD18) of leukocytes and can promiscuously bind and also permeabilize many other cells. CyaA bears an N-terminal adenylyl cyclase (AC) domain linked to a pore-forming RTX cytolysin (Hly) moiety, binds the complement receptor 3 (CR3, αMß2, CD11b/CD18, or Mac-1) of myeloid phagocytes, penetrates their plasma membrane, and delivers the AC enzyme into the cytosol. We constructed a set of CyaA/HlyA chimeras and show that the CyaC-acylated segment and the CR3-binding RTX domain of CyaA can be functionally replaced by the HlyC-acylated segment and the much shorter RTX domain of HlyA. Instead of binding CR3, a CyaA1-710/HlyA411-1024 chimera bound the LFA-1 receptor and effectively delivered AC into Jurkat T cells. At high chimera concentrations (25 nm), the interaction with LFA-1 was not required for CyaA1-710/HlyA411-1024 binding to CHO cells. However, interaction with the LFA-1 receptor strongly enhanced the specific capacity of the bound CyaA1-710/HlyA411-1024 chimera to penetrate cells and deliver the AC enzyme into their cytosol. Hence, interaction of the acylated segment and/or the RTX domain of HlyA with LFA-1 promoted a productive membrane interaction of the chimera. These results help delimit residues 400-710 of CyaA as an "AC translocon" sufficient for translocation of the AC polypeptide across the plasma membrane of target cells.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Bordetella , Cytosol/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophage-1 Antigen/metabolism , Animals , CHO Cells , Cricetulus , Female , Humans , Jurkat Cells , Mice , Mice, Inbred BALB C , Protein Transport , THP-1 Cells
9.
J Biol Chem ; 295(28): 9268-9280, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32461253

ABSTRACT

In a wide range of organisms, from bacteria to humans, numerous proteins have to be posttranslationally acylated to become biologically active. Bacterial repeats in toxin (RTX) cytolysins form a prominent group of proteins that are synthesized as inactive protoxins and undergo posttranslational acylation on ε-amino groups of two internal conserved lysine residues by co-expressed toxin-activating acyltransferases. Here, we investigated how the chemical nature, position, and number of bound acyl chains govern the activities of Bordetella pertussis adenylate cyclase toxin (CyaA), Escherichia coli α-hemolysin (HlyA), and Kingella kingae cytotoxin (RtxA). We found that the three protoxins are acylated in the same E. coli cell background by each of the CyaC, HlyC, and RtxC acyltransferases. We also noted that the acyltransferase selects from the bacterial pool of acyl-acyl carrier proteins (ACPs) an acyl chain of a specific length for covalent linkage to the protoxin. The acyltransferase also selects whether both or only one of two conserved lysine residues of the protoxin will be posttranslationally acylated. Functional assays revealed that RtxA has to be modified by 14-carbon fatty acyl chains to be biologically active, that HlyA remains active also when modified by 16-carbon acyl chains, and that CyaA is activated exclusively by 16-carbon acyl chains. These results suggest that the RTX toxin molecules are structurally adapted to the length of the acyl chains used for modification of their acylated lysine residue in the second, more conserved acylation site.


Subject(s)
Acyltransferases/metabolism , Bacteria/metabolism , Bacterial Proteins/metabolism , Fatty Acids/metabolism , Hemolysin Proteins/metabolism , Animals , Cell Line , Mice
10.
Biochim Biophys Acta Biomembr ; 1862(9): 183310, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32333856

ABSTRACT

Two distinct conformers of the adenylate cyclase toxin (CyaA) appear to accomplish its two parallel activities within target cell membrane. The translocating conformer would deliver the N-terminal adenylyl cyclase (AC) enzyme domain across plasma membrane into cytosol of cells, while the pore precursor conformer would assemble into oligomeric cation-selective pores and permeabilize cellular membrane. Both toxin activities then involve a membrane-interacting 'AC-to-Hly-linking segment' (residues 400 to 500). Here, we report the NMR structure of the corresponding CyaA411-490 polypeptide in dodecylphosphocholine micelles and show that it consists of two α-helices linked by an unrestrained loop. The N-terminal α-helix (Gly418 to His439) remained solvent accessible, while the C-terminal α-helix (His457 to Phe485) was fully enclosed within detergent micelles. CyaA411-490 weakly bound Ca2+ ions (apparent KD 2.6 mM) and permeabilized negatively charged lipid vesicles. At high concentrations (10 µM) the CyaA411-490 polypeptide formed stable conductance units in artificial lipid bilayers with applied voltage, suggesting its possible transmembrane orientation in the membrane-inserted toxin. Mutagenesis revealed that two clusters of negatively charged residues within the 'AC-to-Hly-linking segment' (Glu419 to Glu432 and Asp445 to Glu448) regulate the balance between the AC domain translocating and pore-forming capacities of CyaA in function of calcium concentration.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Biological Transport/genetics , Bordetella pertussis/chemistry , Lipid Bilayers/chemistry , Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/metabolism , Calcium/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane Permeability/genetics , Cyclic AMP/metabolism , Hemolysis/genetics , Humans , Lipid Bilayers/metabolism , Protein Conformation, alpha-Helical/genetics
11.
Toxins (Basel) ; 11(6)2019 06 12.
Article in English | MEDLINE | ID: mdl-31212877

ABSTRACT

Cytolytic leukotoxins of the repeat in toxin (RTX) family are large proteins excreted by gram-negative bacterial pathogens through the type 1 secretion system (T1SS). Due to low yields and poor stability in cultures of the original pathogens, it is useful to purify recombinant fatty-acylated RTX cytolysins from inclusion bodies produced in E. coli. Such preparations are, however, typically contaminated by high amounts of E. coli lipopolysaccharide (LPS or endotoxin). We report a simple procedure for purification of large amounts of biologically active and endotoxin-free RTX toxins. It is based on the common feature of RTX cytolysins that are T1SS-excreted as unfolded polypeptides and fold into a biologically active toxin only upon binding of calcium ions outside of the bacterial cell. Mimicking this process, the RTX proteins are solubilized from inclusion bodies with buffered 8 M urea, bound onto a suitable chromatographic medium under denaturing conditions and the contaminating LPS is removed through extensive on-column washes with buffers containing 6 to 8 M urea and 1% Triton X-100 or Triton X-114. Extensive on-column rinsing with 8 M urea buffer removes residual detergent and the eluted highly active RTX protein preparations then contain only trace amounts of LPS. The procedure is exemplified using four prototypic RTX cytolysins, the Bordetella pertussis CyaA and the hemolysins of Escherichia coli (HlyA), Kingella kingae (RtxA), and Actinobacillus pleuropneumoniae (ApxIA).


Subject(s)
Bacterial Proteins/isolation & purification , Cytotoxins/isolation & purification , Hemolysin Proteins/isolation & purification , Animals , Bacterial Proteins/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Cytotoxins/toxicity , Detergents/chemistry , Erythrocytes/drug effects , Escherichia coli/metabolism , Hemolysin Proteins/toxicity , Hemolysis , Humans , Lipopolysaccharides/analysis , Octoxynol/chemistry , Sheep , THP-1 Cells , Urea/chemistry
12.
Sci Rep ; 9(1): 5758, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962483

ABSTRACT

The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) of pathogenic Bordetellae delivers its adenylyl cyclase (AC) enzyme domain into the cytosol of host cells and catalyzes uncontrolled conversion of cellular ATP to cAMP. In parallel, the toxin forms small cation-selective pores that permeabilize target cell membrane and account for the hemolytic activity of CyaA on erythrocytes. The pore-forming domain of CyaA is predicted to consist of five transmembrane α-helices, of which the helices I, III, IV and V have previously been characterized. We examined here the α-helix II that is predicted to form between residues 529 to 549. Substitution of the glycine 531 residue by a proline selectively reduced the hemolytic capacity but did not affect the AC translocating activity of the CyaA-G531P toxin. In contrast, CyaA toxins with alanine 538 or 546 replaced by diverse residues were selectively impaired in the capacity to translocate the AC domain across cell membrane but remained fully hemolytic. Such toxins, however, formed pores in planar asolectin bilayer membranes with a very low frequency and with at least two different conducting states. The helix-breaking substitution of alanine 538 by a proline residue abolished the voltage-activated increase of membrane activity of CyaA in asolectin bilayers. These results reveal that the predicted α-helix comprising the residues 529 to 549 plays a key role in CyaA penetration into the target plasma membrane and pore-forming activity of the toxin.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Bordetella/enzymology , Adenylate Cyclase Toxin/genetics , Adenylate Cyclase Toxin/toxicity , Amino Acid Substitution , Animals , Cell Membrane/drug effects , Cells, Cultured , Erythrocytes/drug effects , Hemolysis , Mice , Protein Conformation, alpha-Helical , Sheep
13.
Emerg Microbes Infect ; 7(1): 178, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30405113

ABSTRACT

Kingella kingae is a member of the commensal oropharyngeal flora of young children. Improvements in detection methods have led to the recognition of K. kingae as an emerging pathogen that frequently causes osteoarticular infections in children and a severe form of infective endocarditis in children and adults. Kingella kingae secretes a membrane-damaging RTX (Repeat in ToXin) toxin, RtxA, which is implicated in the development of clinical infections. However, the mechanism by which RtxA recognizes and kills host cells is largely unexplored. To facilitate structure-function studies of RtxA, we have developed a procedure for the overproduction and purification of milligram amounts of biologically active recombinant RtxA. Mass spectrometry analysis revealed the activation of RtxA by post-translational fatty acyl modification on the lysine residues 558 and/or 689 by the fatty-acyltransferase RtxC. Acylated RtxA was toxic to various human cells in a calcium-dependent manner and possessed pore-forming activity in planar lipid bilayers. Using various biochemical and biophysical approaches, we demonstrated that cholesterol facilitates the interaction of RtxA with artificial and cell membranes. The results of analyses using RtxA mutant variants suggested that the interaction between the toxin and cholesterol occurs via two cholesterol recognition/interaction amino acid consensus motifs located in the C-terminal portion of the pore-forming domain of the toxin. Based on our observations, we conclude that the cytotoxic activity of RtxA depends on post-translational acylation of the K558 and/or K689 residues and on the toxin binding to cholesterol in the membrane.


Subject(s)
Bacterial Toxins/metabolism , Cholesterol/metabolism , Kingella kingae/enzymology , Lysine/chemistry , Protein Processing, Post-Translational , Transaminases/metabolism , Acylation , Bacterial Toxins/genetics , Cell Line , Cell Membrane/metabolism , Humans , Kingella kingae/genetics , Protein Binding , Recombinant Proteins/metabolism , Transaminases/genetics
14.
Toxins (Basel) ; 10(6)2018 06 16.
Article in English | MEDLINE | ID: mdl-29914160

ABSTRACT

The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) plays a crucial role in virulence and airway colonization capacity of the whooping cough agent Bordetella pertussis. The toxin penetrates target cell membranes and exhibits three distinct biological activities. A population of CyaA conformers forms small cation-selective pores that permeabilize the cell membrane for potassium efflux, which can provoke colloid-osmotic (oncotic) cell lysis. The other two activities are due to CyaA conformers that transiently form calcium influx conduits in the target cell membrane and translocate the adenylate cyclase (AC) enzyme into cytosol of cells. A fourth putative biological activity has recently been reported; an intrinsic phospholipase A (PLA) activity was claimed to be associated with the CyaA polypeptide and be involved in the mechanism of translocation of the AC enzyme polypeptide across cell membrane lipid bilayer. However, the conclusions drawn by the authors contradicted their own results and we show them to be erroneous. We demonstrate that highly purified CyaA is devoid of any detectable phospholipase A1 activity and that contrary to the published claims, the two putative conserved phospholipase A catalytic residues, namely the Ser606 and Asp1079 residues, are not involved in the process of membrane translocation of the AC domain of CyaA across target membranes.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Adenylate Cyclase Toxin/toxicity , Phospholipases A/metabolism , Animals , Aspartic Acid , Bordetella pertussis , Cell Line , Erythrocytes , Hemolysis , Mice , Serine , Sheep
16.
Toxins (Basel) ; 9(10)2017 09 24.
Article in English | MEDLINE | ID: mdl-28946636

ABSTRACT

Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMß2) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3',5'-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Cyclic AMP/chemistry , Phagocytes/chemistry , Signal Transduction , Animals , Bordetella pertussis , Dendritic Cells/cytology , Humans , Macrophage-1 Antigen , Macrophages, Alveolar/cytology , Neutrophils/cytology , Protein Domains , Protein Structure, Tertiary , Structure-Activity Relationship , Syk Kinase
17.
Sci Rep ; 7(1): 9330, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839199

ABSTRACT

The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) translocates its adenylate cyclase (AC) enzyme domain into target cells in a step that depends on membrane cholesterol content. We thus examined what role in toxin activities is played by the five putative cholesterol recognition amino acid consensus (CRAC) motifs predicted in CyaA hemolysin moiety. CRAC-disrupting phenylalanine substitutions had no impact on toxin activities and these were not inhibited by free cholesterol, showing that the putative CRAC motifs are not involved in cholesterol binding. However, helix-breaking proline substitutions in these segments uncovered a structural role of the Y632, Y658, Y725 and Y738 residues in AC domain delivery and pore formation by CyaA. Substitutions of Y940 of the fifth motif, conserved in the acylated domains of related RTX toxins, did not impact on fatty-acylation of CyaA by CyaC and the CyaA-Y940F mutant was intact for toxin activities on erythrocytes and myeloid cells. However, the Y940A or Y940P substitutions disrupted the capacity of CyaA to insert into artificial lipid bilayers or target cell membranes. The aromatic ring of tyrosine 940 side chain thus appears to play a key structural role in molecular interactions that initiate CyaA penetration into target membranes.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Cell Membrane/metabolism , Tyrosine/metabolism , Adenylate Cyclase Toxin/genetics , Amino Acid Motifs , Amino Acid Substitution , Animals , Cell Line , Cholesterol/metabolism , DNA Mutational Analysis , Erythrocytes/metabolism , Macrophages/metabolism , Mice , Protein Binding , Protein Transport , Tyrosine/genetics
18.
Infect Immun ; 85(6)2017 06.
Article in English | MEDLINE | ID: mdl-28396322

ABSTRACT

The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) of Bordetella pertussis targets phagocytic cells expressing the complement receptor 3 (CR3, Mac-1, αMß2 integrin, or CD11b/CD18). CyaA delivers into cells an N-terminal adenylyl cyclase (AC) enzyme domain that is activated by cytosolic calmodulin and catalyzes unregulated conversion of cellular ATP into cyclic AMP (cAMP), a key second messenger subverting bactericidal activities of phagocytes. In parallel, the hemolysin (Hly) moiety of CyaA forms cation-selective hemolytic pores that permeabilize target cell membranes. We constructed the first B. pertussis mutant secreting a CyaA toxin having an intact capacity to deliver the AC enzyme into CD11b-expressing (CD11b+) host phagocytes but impaired in formation of cell-permeabilizing pores and defective in cAMP elevation in CD11b- cells. The nonhemolytic AC+ Hly- bacteria inhibited the antigen-presenting capacities of coincubated mouse dendritic cells in vitro and skewed their Toll-like receptor (TLR)-triggered maturation toward a tolerogenic phenotype. The AC+ Hly- mutant also infected mouse lungs as efficiently as the parental AC+ Hly+ strain. Hence, elevation of cAMP in CD11b- cells and/or the pore-forming capacity of CyaA were not required for infection of mouse airways. The latter activities were, however, involved in bacterial penetration across the epithelial layer, enhanced neutrophil influx into lung parenchyma during sublethal infections, and the exacerbated lung pathology and lethality of B. pertussis infections at higher inoculation doses (>107 CFU/mouse). The pore-forming activity of CyaA further synergized with the cAMP-elevating activity in downregulation of major histocompatibility complex class II (MHC-II) molecules on infiltrating myeloid cells, likely contributing to immune subversion of host defenses by the whooping cough agent.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/pathogenicity , Cyclic AMP/metabolism , Hemolysin Proteins/metabolism , Macrophage-1 Antigen/metabolism , Whooping Cough/microbiology , Animals , CD11b Antigen/metabolism , Cell Membrane/metabolism , Dendritic Cells/immunology , Female , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phagocytes/immunology , T-Lymphocytes/immunology , Virulence
19.
J Biol Chem ; 292(19): 8048-8058, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28348085

ABSTRACT

Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica Although B. pertussis represents a pathogen strictly adapted to the human body temperature, B. bronchiseptica causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both Bordetella species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, B. pertussis adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with B. bronchiseptica Remarkably, B. pertussis maintained the production of virulence factors at 24 °C, whereas B. bronchiseptica cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between B. pertussis and B. bronchiseptica may result from selective adaptation of B. pertussis to the human host. We propose that the reduced plasticity of the B. pertussis membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease.


Subject(s)
Acclimatization , Bordetella bronchiseptica/cytology , Bordetella pertussis/cytology , Cell Membrane/metabolism , Temperature , Anisotropy , Bacterial Proteins/metabolism , Body Temperature , Bordetella bronchiseptica/physiology , Bordetella pertussis/physiology , Cytoplasm/metabolism , Environment , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Phosphorylation , Signal Transduction , Species Specificity , Spectrometry, Fluorescence , Transcription Factors/metabolism , Virulence , Virulence Factors/metabolism
20.
Sci Rep ; 6: 29137, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27581058

ABSTRACT

The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The 'AC to Hly-linking segment' thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins.


Subject(s)
Adenylate Cyclase Toxin/genetics , Whooping Cough/genetics , Adenylate Cyclase Toxin/chemistry , Adenylate Cyclase Toxin/metabolism , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/genetics , Bordetella pertussis/chemistry , Bordetella pertussis/pathogenicity , Cell Membrane Permeability/drug effects , Cyclic AMP/metabolism , Hemolysin Proteins/genetics , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Perforin/chemistry , Whooping Cough/microbiology , Whooping Cough/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...