Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 88(9): e0004422, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35416681

ABSTRACT

Klebsiella variicola, a member of Klebsiella pneumoniae complex, is found to infect plants, insects, and animals and is considered an emerging pathogen in humans. While antibiotic resistance is often prevalent among K. variicola isolates from humans, this has not been thoroughly investigated in isolates from nonhuman sources. Prior evidence suggests that K. variicola can be transmitted between agricultural products as well as between animals, and the use of antibiotics in agriculture has increased antibiotic resistance in other emerging pathogens. Furthermore, in animals that contain K. variicola as a normal member of the rumen microbiota, the same bacteria can also cause infections, such as clinical mastitis in dairy cows. Here, we describe K. variicola UFMG-H9 and UFMG-H10, both isolated from the urine of healthy Gyr heifers. These two genomes represent the first isolates from the urine of cattle and exhibit greater similarity with strains from the human urinary tract than isolates from bovine fecal or milk samples. Unique to the UFMG-H9 genome is the presence of flagellar genes, the first such observation for K. variicola. Neither of the sampled animals had symptoms associated with K. variicola infection, even though genes associated with virulence and antibiotic resistance were identified in both strains. Both strains were resistant to amoxicillin, erythromycin, and vancomycin, and UFMG-H10 is resistant to fosfomycin. The observed resistances emphasize the concern regarding the emergence of this species as a human pathogen given its circulation in healthy livestock animals. IMPORTANCE Klebsiella variicola is an opportunistic pathogen in humans. It also has been associated with bovine mastitis, which can have significant economic effects. While numerous isolates have been sequenced from human infections, only 12 have been sequenced from cattle (fecal and milk samples) to date. Recently, we discovered the presence of K. variicola in the urine of two healthy heifers, the first identification of K. variicola in the bovine urinary tract and the first confirmed K. variicola isolate encoding for flagella-mediated motility. Here, we present the genome sequences and analysis of these isolates. The bovine urinary genomes are more similar to isolates from the human urinary tract than they are to other isolates from cattle, suggesting niche specialization. The presence of antibiotic resistance genes is concerning, as prior studies have found transmission between animals. These findings are important to understand the circulation of K. variicola in healthy livestock animals.


Subject(s)
Klebsiella Infections , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Multiple, Bacterial/genetics , Female , Humans , Klebsiella/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/veterinary , Klebsiella pneumoniae/genetics , Phylogeny
2.
Front Microbiol ; 13: 764760, 2022.
Article in English | MEDLINE | ID: mdl-35330764

ABSTRACT

The study of livestock microbiota has immediate benefits for animal health as well as mitigating food contamination and emerging pathogens. While prior research has indicated the gastrointestinal tract of cattle as the source for many zoonoses, including Shiga-toxin producing Escherichia coli and antibiotic resistant bacteria, the bovine urinary tract microbiota has yet to be thoroughly investigated. Here, we describe 5 E. coli and 4 Pseudomonas aeruginosa strains isolated from urine of dairy Gyr cattle. While both species are typically associated with urinary tract infections and mastitis, all of the animals sampled were healthy. The bovine urinary strains were compared to E. coli and P. aeruginosa isolates from other bovine samples as well as human urinary samples. While the bovine urinary E. coli isolates had genomic similarity to isolates from the gastrointestinal tract of cattle and other agricultural animals, the bovine urinary P. aeruginosa strains were most similar to human isolates suggesting niche adaptation rather than host adaptation. Examination of prophages harbored by these bovine isolates revealed similarity with prophages within distantly related E. coli and P. aeruginosa isolates from the human urinary tract. This suggests that related urinary phages may persist and/or be shared between mammals. Future studies of the bovine urinary microbiota are needed to ascertain if E. coli and P. aeruginosa are resident members of this niche and/or possible sources for emerging pathogens in humans.

3.
Microbiology (Reading) ; 167(7)2021 07.
Article in English | MEDLINE | ID: mdl-34269674

ABSTRACT

Corynebacterium phoceense is a Gram-positive species previously isolated from human urine. Although other species from the same genus have been associated with urinary tract infections, C. phoceense is currently believed to be a non-pathogenic member of the urogenital microbiota. Prior to our study, only two isolates were described in the literature, and very little is known about the species. Here, we describe C. phoceense UFMG-H7, the first strain of this species isolated from the urine of healthy cattle. The genome for this isolate was produced and compared to the two other publicly available C. phoceense as well as other Corynebacterium genome assemblies. Our in-depth genomic analysis identified four additional publicly available genome assemblies that are representatives of the species, also isolated from the human urogenital tract. Although none of the strains have been associated with symptoms or disease, numerous genes associated with virulence factors are encoded. In contrast to related Corynebacterium species and Corynebacterium species from the bovine vaginal tract, all C. phoceense strains examined code for the SpaD-type pili suggesting adherence is essential for its persistence within the urinary tract. As the other C. phoceense strains analysed were isolated from the human urogenital tract, our results suggest that this species may be specific to this niche.


Subject(s)
Corynebacterium/isolation & purification , Microbiota , Urogenital System/microbiology , Animals , Cattle , Corynebacterium/classification , Corynebacterium/genetics , Genome, Bacterial , Humans , Urine/microbiology
4.
G3 (Bethesda) ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33561240

ABSTRACT

While the gram-positive bacterium Vagococcus fluvialis has been isolated from the environment as well as fish, birds, and mammals, very little is known about the species. V. fluvialis is believed to be a probiotic in fishes. However, within mammals, it is more frequently isolated from infectious tissue, including on rare occasions human and livestock lesions. Prior to the study described here, V. fluvialis had never been found in healthy bovine animals. Here, we present the complete genomes of V. fluvialis UFMG-H6, UFMG-H6B, and UFMG-H7, novel strains isolated from urine samples from healthy bovine females. These are the first genomes of mammalian isolates and the first description of V. fluvialis from urine. The genomes did not encode for any known virulence genes, suggesting that they may be commensal members of the urine microbiota.


Subject(s)
Enterococcaceae , Fishes , Animals , Cattle , Female , Virulence
5.
Front Microbiol ; 11: 2094, 2020.
Article in English | MEDLINE | ID: mdl-33013764

ABSTRACT

Urinary tract infections (UTIs) are one of the most common human bacterial infections. While UTIs are commonly associated with colonization by Escherichia coli, members of this species also have been found within the bladder of individuals with no lower urinary tract symptoms (no LUTS), also known as asymptomatic bacteriuria. Prior studies have found that both uropathogenic E. coli (UPEC) strains and E. coli isolates that are not associated with UTIs encode for virulence factors. Thus, the reason(s) why E. coli sometimes causes UTI-like symptoms remain(s) elusive. In this study, the genomes of 66 E. coli isolates from adult female bladders were sequenced. These isolates were collected from four cohorts, including women: (1) without lower urinary tract symptoms, (2) overactive bladder symptoms, (3) urgency urinary incontinence, and (4) a clinical diagnosis of UTI. Comparative genomic analyses were conducted, including core and accessory genome analyses, virulence and motility gene analyses, and antibiotic resistance prediction and testing. We found that the genomic content of these 66 E. coli isolates does not correspond with the participant's symptom status. We thus looked beyond the E. coli genomes to the composition of the entire urobiome and found that the presence of E. coli alone was not sufficient to distinguish between the urobiomes of individuals with UTI and those with no LUTS. Because E. coli presence, abundance, and genomic content appear to be weak predictors of UTI status, we hypothesize that UTI symptoms associated with detection of E. coli are more likely the result of urobiome composition.

6.
PLoS One ; 15(6): e0234159, 2020.
Article in English | MEDLINE | ID: mdl-32525961

ABSTRACT

Bacteriophages (phages) play a key role in shaping microbial communities, including those of the human body. Phages are abundant members of the urogenital tract, most often persisting through the lysogenic life cycle as prophages integrated within the genomes of their bacterial hosts. While numerous studies of the urogenital microbiota have focused on the most abundant bacterial member of this niche-Lactobacillus species-very little is known about Lactobacillus phages. Focusing on Lactobacillus jensenii strains from the urinary tract, we identified numerous prophages related to the previously characterized Lv-1 phage from a vaginal L. jensenii strain. Furthermore, we identified a new L. jensenii phage, Lu-1. Evidence suggests that both phages are abundant within the urogenital tract. CRISPR spacer sequences matching to Lv-1 and Lu-1 prophages were identified. While first detected in urinary isolates, the Lu-1 phage was also discovered in L. jensenii isolates from vaginal and perineal swabs, and both phages were found in metagenomic data sets. The prevalence of these phages in the isolates suggests that both phages are active members of the urogenital microbiota.


Subject(s)
Bacteriophages/isolation & purification , Lactobacillus/virology , Perineum/microbiology , Vagina/microbiology , Bacteriophages/genetics , Computational Biology , Female , Humans , Microbiota
7.
Microbiol Resour Announc ; 9(19)2020 May 07.
Article in English | MEDLINE | ID: mdl-32381621

ABSTRACT

Citrobacter freundii is a pathogen associated with antibiotic resistance and severe infections in humans. Here, we report the draft genome sequence of C. freundii strain UFMG-H9, an isolate from urine from a healthy Gyr heifer.

8.
Microbiol Resour Announc ; 9(19)2020 May 07.
Article in English | MEDLINE | ID: mdl-32381622

ABSTRACT

Aeromonas caviae is an emerging pathogen in humans, causing intestinal infections. Here, we report Aeromonas caviae strain UFMG-H8, isolated from the urine of a healthy heifer (Gyr breed).

9.
Microbiol Resour Announc ; 9(21)2020 May 21.
Article in English | MEDLINE | ID: mdl-32439671

ABSTRACT

Enterobacter asburiae is part of the Enterobacter cloacae complex, related to nosocomial opportunistic infections in humans. Here, we report the draft genome of E. asburiae strain UFMG-H9, an isolate from urine from a healthy Gyr heifer.

10.
Microbiol Resour Announc ; 9(21)2020 May 21.
Article in English | MEDLINE | ID: mdl-32439672

ABSTRACT

Enterococcus casseliflavus is a commensal bacterium present in the intestinal microbiota of different animals. Previous studies have found that strains isolated from livestock are often resistant to many different antibiotics. Here, we present three E. casseliflavus strains, UFMG-H7, UFMG-H8, and UFMG-H9, isolated from urine collected from healthy dairy heifers in Brazil.

11.
Microbiol Resour Announc ; 9(21)2020 May 21.
Article in English | MEDLINE | ID: mdl-32439673

ABSTRACT

Members of the Staphylococcus genus are known pathogens causing mastitis in dairy cows, which results in major economic losses. Here, we present Staphylococcus epidermidis UFMG-H7, Staphylococcus hominis UFMG-H7B, and Staphylococcus sciuri UFMG-H6, isolated from the urine of healthy purebred Gyr heifers.

12.
Microbiol Resour Announc ; 8(35)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31467111

ABSTRACT

Lactobacillus jensenii, a protective bacterium in the vaginal microbiota, is also a member of the female urinary tract community. Here, we report 11 genome sequences of L. jensenii strains isolated from catheterized urine from women. This effort greatly increases our knowledge of the genetic diversity of this species within the bladder.

13.
Front Microbiol ; 10: 195, 2019.
Article in English | MEDLINE | ID: mdl-30828321

ABSTRACT

Freshwater lakes are home to bacterial communities with 1000s of interdependent species. Numerous high-throughput 16S rRNA gene sequence surveys have provided insight into the microbial taxa found within these waters. Prior surveys of Lake Michigan waters have identified bacterial species common to freshwater lakes as well as species likely introduced from the urban environment. We cultured bacterial isolates from samples taken from the Chicago nearshore waters of Lake Michigan in an effort to look more closely at the genetic diversity of species found there within. The most abundant genus detected was Pseudomonas, whose presence in freshwaters is often attributed to storm water or runoff. Whole genome sequencing was conducted for 15 Lake Michigan Pseudomonas strains, representative of eight species and three isolates that could not be resolved with named species. These genomes were examined specifically for genes encoding functionality which may be advantageous in their urban environment. Antibiotic resistance, amidst other known virulence factors and defense mechanisms, were identified in the genome annotations and verified in the lab. We also tested the Lake Michigan Pseudomonas strains for siderophore production and resistance to the heavy metals mercury and copper. As the study presented here shows, a variety of pseudomonads have inhabited the urban coastal waters of Lake Michigan.

SELECTION OF CITATIONS
SEARCH DETAIL
...