Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542505

ABSTRACT

Peritoneal dialysis (PD) is a home-based efficacious modality for the replacement of renal function in end-stage kidney failure patients, but it is still under-prescribed. A major limitation is the durability of the dialytic technique. Continuous exposure of the peritoneum to bioincompatible conventional glucose-based solutions is thought to be the main cause of the long-term morpho-functional peritoneal changes that eventually result in ultrafiltration failure. Poor PD solution biocompatibility is primarily related to the high glucose content, which is not only detrimental to the peritoneal membrane but has many potential metabolic side effects. To improve the clinical outcome and prolong the survival of the treatment, PD-related bioincompatibility urgently needs to be overcome. However, combining dialytic and osmotic efficacy with a satisfactory biocompatible profile is proving to be quite difficult. New approaches targeting the composition of the PD solution include the replacement of glucose with other osmotic agents, and the addition of cytoprotective or osmo-metabolic compounds. Other strategies include the infusion of mesenchymal cells or the administration of orally active agents. In the present article, we review the current evidence on efforts to improve the biocompatible and functional performance of PD, focusing on studies performed in vivo (animal models of PD, human subjects on PD).


Subject(s)
Peritoneal Dialysis , Renal Dialysis , Animals , Humans , Peritoneal Dialysis/adverse effects , Dialysis Solutions/adverse effects , Peritoneum , Glucose/therapeutic use
2.
Biomedicines ; 11(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37509428

ABSTRACT

We investigated how the extracellular matrix (ECM) affects LoVo colorectal cancer cells behavior during a spatiotemporal invasion. Epithelial-to-mesenchymal transition (EMT) markers, matrix-degrading enzymes, and morphological phenotypes expressed by LoVo-S (doxorubicin-sensitive) and higher aggressive LoVo-R (doxorubicin-resistant) were evaluated in cells cultured for 3 and 24 h on Millipore filters covered by Matrigel, mimicking the basement membrane, or type I Collagen reproducing a desmoplastic lamina propria. EMT and invasiveness were investigated with RT-qPCR, Western blot, and scanning electron microscopy. As time went by, most gene expressions decreased, but in type I Collagen samples, a strong reduction and high increase in MMP-2 expression in LoVo-S and -R cells occurred, respectively. These data were confirmed by the development of an epithelial morphological phenotype in LoVo-S and invading phenotypes with invadopodia in LoVo-R cells as well as by protein-level analysis. We suggest that the duration of culturing and type of substrate influence the morphological phenotype and aggressiveness of both these cell types differently. In particular, the type I collagen meshwork, consisting of large fibrils confining inter fibrillar micropores, affects the two cell types differently. It attenuates drug-sensitive LoVo-S cell aggressiveness but improves a proteolytic invasion in drug-resistant LoVo-R cells as time goes by. Experimental studies on CRC cells should examine the peri-tumoral ECM components, as well as the dynamic physical conditions of TME, which affect the behavior and aggressiveness of both drug-sensitive and drug-resistant LoVo cells differently.

3.
Methods Mol Biol ; 2619: 99-106, 2023.
Article in English | MEDLINE | ID: mdl-36662465

ABSTRACT

Glycosaminoglycans, the building blocks of proteoglycans, play a central role in the extracellular matrix and regulate a number of cellular processes. Therefore, any imbalance in their levels can lead to significant changes in cell behavior and phenotype. Additionally, glycosaminoglycans and their derivatives can be deployed as therapeutic agents in pathological conditions. Since cell morphology is a critical indicator of specialized cellular functions, its study can provide valuable insight. Scanning electron microscopy is a high-resolution imaging technique that makes for an ideal tool to observe the cellular appearance in 2D and 3D cultures under different conditions and/or substrates. In this chapter we provide a step-by-step protocol to study the influence of exogenously added glycosaminoglycans in the morphology of cells using scanning electron microscopy.


Subject(s)
Glycosaminoglycans , Proteoglycans , Microscopy, Electron, Scanning , Extracellular Matrix/physiology
4.
Biomolecules ; 12(12)2022 11 30.
Article in English | MEDLINE | ID: mdl-36551219

ABSTRACT

Aim of the study was to understand the behavior of colon cancer LoVo-R cells (doxorubicin-resistant) vs. LoVo-S (doxorubicin sensitive) in the initial steps of extracellular matrix (ECM) invasion. We investigated how the matrix substrates Matrigel and type I collagen-mimicking the basement membrane (BM) and the normal or desmoplastic lamina propria, respectively-could affect the expression of epithelial-to-mesenchymal transition (EMT) markers, matrix-degrading enzymes, and phenotypes. Gene expression with RT-qPCR, E-cadherin protein expression using Western blot, and phenotypes using scanning electron microscopy (SEM) were analyzed. The type and different concentrations of matrix substrates differently affected colon cancer cells. In LoVo-S cells, the higher concentrated collagen, mimicking the desmoplastic lamina propria, strongly induced EMT, as also confirmed by the expression of Snail, metalloproteases (MMPs)-2, -9, -14 and heparanase (HPSE), as well as mesenchymal phenotypes. Stimulation in E-cadherin expression in LoVo-S groups suggests that these cells develop a hybrid EMT phenotype. Differently, LoVo-R cells did not increase their aggressiveness: no changes in EMT markers, matrix effectors, and phenotypes were evident. The low influence of ECM components in LoVo-R cells might be related to their intrinsic aggressiveness related to chemoresistance. These results improve understanding of the critical role of tumor microenvironment in colon cancer cell invasion, driving the development of new therapeutic approaches.


Subject(s)
Collagen Type I , Colonic Neoplasms , Epithelial-Mesenchymal Transition , Tumor Microenvironment , Humans , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Colonic Neoplasms/pathology , Doxorubicin/therapeutic use , Collagen Type I/metabolism
5.
Cell Death Dis ; 13(11): 977, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402749

ABSTRACT

The activation of TNF receptors can lead to cell death with a mechanism of cell necrosis regulated genetically and distinct from apoptosis which is defined as necroptosis. Necroptosis has been one of the most studied emerging cell death/signaling pathways in recent years, especially in light of the role of this process in human disease. However, not all regulatory components of TNF signaling have been identified in relation to both physiological and pathological conditions. In 2008, Spata2 (Spermatogenesis-associated protein 2) was identified as one of the seven fundamental genes for the cellular signaling network that regulates necroptosis and apoptosis. This gene had been cloned by our group and named Spata2 as its expression was found to be elevated in the testis compared to other tissues, localized at the Sertoli cell level and FSH-dependent. More recently, it has been demonstrated that deletion of Spata2 gene causes increased inhibin α expression and attenuated fertility in male mice. However, more importantly, five recently published reports have highlighted that SPATA2 is crucial for recruiting CYLD to the TNFR1 signaling complex thus promoting its activation leading to TNF-induced cell death. Loss of SPATA2 increases transcriptional activation of NF-kB and limits TNF-induced necroptosis. Here we will discuss these important findings regarding SPATA2 and, in particular, focus attention on the evidence that suggests a role for this protein in the TNF signaling pathway.


Subject(s)
Neoplasms , Spermatogenesis , Humans , Male , Mice , Animals , Spermatogenesis/genetics , Signal Transduction , NF-kappa B/genetics , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Proteins
6.
Front Oncol ; 12: 918419, 2022.
Article in English | MEDLINE | ID: mdl-35965510

ABSTRACT

Prostate cancer displays a certain phenotypic plasticity that allows for the transition of cells from the epithelial to the mesenchymal state. This process, known as epithelial-mesenchymal transition (EMT), is one of the factors that give the tumor cells greater invasive and migratory capacity with subsequent formation of metastases. In addition, many cancers, including prostate cancer, are derived from a cell population that shows the properties of stem cells. These cells, called cancer stem cells (CSCs) or tumor-initiating cells, not only initiate the tumor process and growth but are also able to mediate metastasis and drug resistance. However, the impact of EMT and CSCs in prostate cancer progression and patient survival is still far from fully understood. Heparanase (HPSE), the sole mammalian endoglycosidase capable of degrading heparan sulfate (HS), is also involved in prostate cancer progression. We had previously proved that HPSE regulates EMT in non-cancerous pathologies. Two prostate cancer cell lines (DU145 and PC3) were silenced and overexpressed for HPSE. Expression of EMT and stemness markers was evaluated. Results showed that the expression of several EMT markers are modified by HPSE expression in both the prostate cancer cell lines analyzed. In the same way, the stemness markers and features are also modulated by HPSE expression. Taken together, the present findings seem to prove a new mechanism of action of HPSE in sustaining prostate cancer growth and diffusion. As for other tumors, these results highlight the importance of HPSE as a potential pharmacological target in prostate cancer treatment.

7.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563220

ABSTRACT

Peritoneal dialysis (PD) is an efficient renal replacement therapy for patients with end-stage renal disease. Even if it ensures an outcome equivalent to hemodialysis and a better quality of life, in the long-term, PD is associated with the development of peritoneal fibrosis and the consequents patient morbidity and PD technique failure. This unfavorable effect is mostly due to the bio-incompatibility of PD solution (mainly based on high glucose concentration). In the present review, we described the mechanisms and the signaling pathway that governs peritoneal fibrosis, epithelial to mesenchymal transition of mesothelial cells, and angiogenesis. Lastly, we summarize the present and future strategies for developing more biocompatible PD solutions.


Subject(s)
Peritoneal Dialysis , Peritoneal Fibrosis , Dialysis Solutions/metabolism , Epithelial-Mesenchymal Transition , Humans , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/therapy , Peritoneum/pathology , Quality of Life
8.
Matrix Biol Plus ; 13: 100097, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35036899

ABSTRACT

The surface of all animal cells is coated with a layer of carbohydrates linked in various ways to the outer side of the plasma membrane. These carbohydrates are mainly bound to proteins in the form of glycoproteins and proteoglycans and together with the glycolipids constitute the so-called glycocalyx. In particular, the endothelial glycocalyx that covers the luminal layer of the endothelium is composed of glycosaminoglycans (heparan sulphate -HS and hyaluronic acid -HA), proteoglycans (syndecans and glypicans) and adsorbed plasma proteins. Thanks to its ability to absorb water, this structure contributes to making the surface of the vessels slippery but at the same time acts by modulating the mechano-transduction of the vessels, the vascular permeability and the adhesion of leukocytes in thus regulating several physiological and pathological events. Among the various enzymes involved in the degradation of the glycocalyx, heparanase (HPSE) has been shown to be particularly involved. This enzyme is responsible for the cutting of heparan sulfate (HS) chains at the level of the proteoglycans of the endothelial glycocalyx whose dysfunction appears to have a role in organ fibrosis, sepsis and viral infection. In this mini-review, we describe the mechanisms by which HPSE contributes to glycocalyx remodeling and then examine the role of glycocalyx degradation in the development of pathological conditions and pharmacological strategies to preserve glycocalyx during disease pathogenesis.

9.
Urologia ; 89(1): 38-43, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33876675

ABSTRACT

PURPOSE: To investigate possible renal damage in healthy men exposed to extreme hypobaric hypoxia, using urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL) concentration as biomarker. The value of NGAL as a biomarker of proximal tubular cell damage under hypoxic conditions was also tested in vitro experiments. METHODS: NGAL was assayed in a cohort of air cadets (n = 16) exposed to hypobaric hypoxia in a hypobaric chamber during their training program. In all subjects, urine creatinine (Cr) and urinary NGAL levels were measured immediately before, 3, and 24 h after hypobaric environment exposure. Three in vitro experiments using proximal tubular cell cultures were also performed to measure NGAL gene expression, NGAL secretion in the culture medium and to evaluate apoptosis under two cycles of hypoxia and reoxygenation. RESULTS: In the in vivo study, geometric means of urinary NGAL/Cr ratio measured 24 h after hypobaric hypoxia in the hypobaric chamber were significantly lower than baseline values (13.4 vs 25.9 ng/mg, p = 0.01). In cell cultures, hypoxia down-regulated NGAL gene expression without significantly changing NGAL secretion in the culture medium. Hypoxia significantly increased the percentage of apoptotic/necrotic cells, especially after the second hypoxia-reoxygenation cycle. CONCLUSIONS: Exposure to hypobaric-hypoxic environments does not cause significant and irreversible renal tubular injury in vivo and in vitro, except than in a late stage. The hypoxic insult does not seem to be mirrored by an increase of urinary NGAL in healthy men nor of NGAL gene expression in HK-2 cell culture or secretion in the culture medium in the in vitro conditions reported in the present study.


Subject(s)
Acute Kidney Injury , Acute Kidney Injury/etiology , Biomarkers , Humans , Hypoxia , Kidney , Lipocalin-2 , Male
10.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34360717

ABSTRACT

Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling-and their metabolic sequelae-on the synthesis of collagen and other extracellular membrane components. In this review, we outline these interactions and explore how novel PD solution formulations are aimed at utilizing this knowledge to minimise the complications associated with fibrosis, while maintaining adequate rates of ultrafiltration across the peritoneal membrane and preservation of patient urinary volumes. We discuss the development of a new generation of reduced-glucose PD solutions that employ a variety of osmotically active constituents and highlight the biochemical rationale underlying optimization of oxidative metabolism within the peritoneal membrane. They are aimed at achieving optimal clinical outcomes and improving the whole-body metabolic profile of patients, particularly those who are glucose-intolerant, insulin-resistant, or diabetic, and for whom daily exposure to high doses of glucose is contraindicated.


Subject(s)
Diabetes Mellitus/therapy , Dialysis Solutions/therapeutic use , Glucose Intolerance/therapy , Insulin Resistance , Kidney Failure, Chronic/therapy , Peritoneal Dialysis , Dialysis Solutions/adverse effects , Glucose/adverse effects , Glucose/therapeutic use , Humans , Peritoneum
11.
Nutrients ; 13(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209455

ABSTRACT

Glucose-based solutions remain the most used osmotic agents in peritoneal dialysis (PD), but unavoidably they contribute to the loss of peritoneal filtration capacity. Here, we evaluated at a molecular level the effects of XyloCore, a new PD solution with a low glucose content, in mesothelial and endothelial cells. Cell viability, integrity of mesothelial and endothelial cell membrane, activation of mesothelial and endothelial to mesenchymal transition programs, inflammation, and angiogenesis were evaluated by several techniques. Results showed that XyloCore preserves mesothelial and endothelial cell viability and membrane integrity. Moreover XyloCore, unlike glucose-based solutions, does not exert pro-fibrotic, -inflammatory, and -angiogenic effects. Overall, the in vitro evidence suggests that XyloCore could represent a potential biocompatible solution promising better outcomes in clinical practice.


Subject(s)
Dialysis Solutions/pharmacology , Epithelial Cells/metabolism , Epithelium/metabolism , Glucose/pharmacology , Inflammation/pathology , Mesoderm/metabolism , Neovascularization, Physiologic , Peritoneal Dialysis , Biomarkers/metabolism , Cell Line , Cell Shape/drug effects , Cell Survival/drug effects , Cell Transdifferentiation/drug effects , Electric Impedance , Epithelial Cells/drug effects , Epithelium/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Mesoderm/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Neovascularization, Physiologic/drug effects , Oxidative Stress/drug effects , Permeability , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/metabolism
12.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804258

ABSTRACT

The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels' mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.


Subject(s)
Endothelium/chemistry , Fibrosis/genetics , Glycocalyx/chemistry , Mechanotransduction, Cellular/genetics , Blood Proteins/chemistry , Blood Proteins/genetics , Capillary Permeability/genetics , Endothelium/ultrastructure , Fibrosis/pathology , Glucuronidase/adverse effects , Glycocalyx/genetics , Glycocalyx/ultrastructure , Glycosaminoglycans/chemistry , Glycosaminoglycans/genetics , Humans , Matrix Metalloproteinases/adverse effects , Proteoglycans/chemistry , Proteoglycans/genetics , Reactive Oxygen Species/adverse effects
13.
FEBS J ; 288(24): 6850-6912, 2021 12.
Article in English | MEDLINE | ID: mdl-33605520

ABSTRACT

Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.


Subject(s)
Extracellular Matrix/metabolism , Animals , Extracellular Matrix/chemistry , Humans
14.
Cells ; 9(9)2020 09 04.
Article in English | MEDLINE | ID: mdl-32899718

ABSTRACT

Breast cancer is a leading disease in women. Several studies are focused to evaluate the critical role of extracellular matrix (ECM) in various biochemical and molecular aspects but also in terms of its effect on cancer cell morphology and therefore on cancer cell invasion and metastatic potential. ECM fibrillar components, such as collagen and fibronectin, affect cell behavior and properties of mammary cancer cells. The aim of this study was to investigate using the scanning electron microscopy (SEM) how the highly invasive MDA-MB-231 breast cancer cells, interplaying with ECM substrates during cell migration/invasion, modify their morphological characteristics and cytoplasmic processes in relation to their invasive potential. In particular we reproduced and analyzed how natural structural barriers to cancer cell invasion, such as the basement membrane (Matrigel) and fibrillar components of dermis (fibronectin as well as the different concentrations/array of type I collagen), could induce morphological changes in 3D cultures. Interestingly, we demonstrate that, even with different effects, all collagen concentrations/arrays lead to morphological alterations of breast cancer cells. Intriguingly, the elongated mesenchymal shaped cells were more prominent in 3D cultures with a dense and thick substrate (thick Matrigel, high concentrated collagen network, and densely packed collagen fibers), even though cells with different shape produced and released microvesicles and exosomes as well. It is therefore evident that the peri-tumoral collagen network may act not only as a barrier but also as a dynamic scaffold which stimulates the morphological changes of cancer cells, and modulates tumor development and metastatic potential in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Exosomes/metabolism , Extracellular Matrix/metabolism , Microscopy, Electron, Scanning/methods , Breast Neoplasms/pathology , Female , Humans , Neoplasm Invasiveness
15.
Adv Exp Med Biol ; 1221: 669-684, 2020.
Article in English | MEDLINE | ID: mdl-32274731

ABSTRACT

Organ fibrosis is defined as a deregulated wound-healing process characterized by a progressive accumulation of fibrous tissue and by reduced remodeling that can lead to the loss of functionality of the affected organ. This pathological process is quite common in several parenchymal organs such as kidneys, liver, and lungs and represents a real health emergency in developed western countries since a real anti-fibrotic therapy is not yet available in most cases. Heparanase (HPSE), which is the enzyme that cuts off the side chains of heparan sulfate (HS) proteoglycan, appears to be involved in the aetiopathogenesis of fibrosis in all these organs, even if with different mechanisms. Here we discuss how the interplay between HPSE and components of the immune and inflammatory responses can activate recruitment, proliferation, and activation of myofibroblasts which represent the main cell type responsible for the deposition of fibrous matrix. Finally, bearing in mind that once the activity of HPSE is inhibited no other molecule is able to perform the same function, it is desirable that this enzyme could prove to be a suitable pharmacological target in anti-fibrotic therapy.


Subject(s)
Fibrosis/enzymology , Fibrosis/pathology , Glucuronidase/metabolism , Fibrosis/metabolism , Heparan Sulfate Proteoglycans , Humans , Myofibroblasts , Organ Specificity , Wound Healing
16.
Matrix Biol Plus ; 6-7: 100026, 2020 May.
Article in English | MEDLINE | ID: mdl-33543024

ABSTRACT

Cancer cell invasion into the surrounding extracellular matrix (ECM) takes place when cell-cell junctions are disrupted upon epithelial-to-mesenchymal transition (EMT). Both cancer cell-stroma and cell-cell crosstalk are essential to support the continuous tumor invasion. Cancer cells release microvesicles and exosomes containing bioactive molecules and signal peptides, which are recruited by neighboring cells or carried to distant sites, thus supporting intercellular communication and cargo transfer. Besides this indirect communication mode, cancer cells can develop cytoplasmic intercellular protrusions or tunneling nanotubes (TNTs), which allow the direct communication and molecular exchange between connected distinct cells. Using scanning electron microscopy (SEM) we show for the first time that MDA-MB-231 (high metastatic potential) and shERß MDA-MB-231 (low metastatic potential) breast cancer cells cultured on fibronectin and collagen type I or 17ß-estradiol (E2) develop TNTs and very long flexible filopodia. Interestingly, the less aggressive shERß MDA-MB-231 cells treated with E2 in 3D collagen matrix showed the highest development of TNTs and filopodia. TNTs were often associated to adhering exosomes and microvesicles surfing from one cell to another, but no filopodia exhibited vesicle-like cytoplasmic structures on their surface. Moreover, E2 affected the expression of matrix macromolecules and cell effectors mostly in the presence of ERß. Our novel data highlights the significance of matrix substrates and the presence of E2 and ERß in the formation of cellular protrusion and the production of surface structures, defining novel phenotypes that unravel nodal reports for breast cancer progression.

17.
Semin Cancer Biol ; 62: 86-98, 2020 05.
Article in English | MEDLINE | ID: mdl-31348993

ABSTRACT

Heparanase (HPSE) is an endoglycosidase that catalyses the cutting of the side chains of heparan-sulphate proteoglycans (HS), thus determining the remodelling of the extracellular matrix and basement membranes, as well as promoting the release of different HS-related molecules as growth factors, cytokines and enzymes. Ever since the HPSE was identified in the late 1980s, several experimental studies have shown that its overexpression was instrumental in increasing tumor growth, metastatic dissemination, angiogenesis and inflammation. More recently, HPSE involvment has also been demonstrated in mediating tumor-host crosstalk, in inducing gene transcription, in the activation of signaling pathways and in the formation of exosomes and in autophagy. All of these activities (enzymatic and non-enzymatic) together make heparanase a multifunctional molecule that increases the aggressiveness and chemo-resistance of tumor cells. Conversely, heparanase gene-silencing or tumor treatment with compounds that inhibit heparanase activity have been shown to significantly attenuate tumor progression in different animal models of tumorigenesis, further emphasizing the therapeutic potential of anti-heparanase therapy for several types of neoplasms. This review focuses on present knowledge and recent development in the study of heparanase in cancer progression as well as on novel mechanisms by which heparanase regulates tumor metastasis and chemo-resistance. Moreover, recent advances in strategies for its inhibition as a potential therapeutic option will be discussed.


Subject(s)
Glucuronidase/genetics , Glucuronidase/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Animals , Autophagy , Blood Coagulation , Disease Management , Disease Progression , Disease Susceptibility , Drug Resistance, Neoplasm , Exosomes/metabolism , Extracellular Matrix/metabolism , Glucuronidase/antagonists & inhibitors , Humans , Inflammation/complications , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Intracellular Space/metabolism , Molecular Targeted Therapy , Neoplasms/pathology , Neoplasms/therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Tumor Microenvironment
18.
J Clin Med ; 8(2)2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30736469

ABSTRACT

: Interactions of cancer cells with matrix macromolecules of the surrounding tumor stroma are critical to mediate invasion and metastasis. In this study, we reproduced the collagen mechanical barriers in vitro (i.e., basement membrane, lamina propria under basement membrane, and deeper bundled collagen fibers with different array). These were used in 3D cell cultures to define their effects on morphology and behavior of breast cancer cells with different metastatic potential (MCF-7 and MDA-MB-231) using scanning electron microscope (SEM). We demonstrated that breast cancer cells cultured in 2D and 3D cultures on different collagen substrates show different morphologies: i) a globular/spherical shape, ii) a flattened polygonal shape, and iii) elongated/fusiform and spindle-like shapes. The distribution of different cell shapes changed with the distinct collagen fiber/fibril physical array and size. Dense collagen fibers, parallel to the culture plane, do not allow the invasion of MCF-7 and MDA-MB-231 cells, which, however, show increases of microvilli and microvesicles, respectively. These novel data highlight the regulatory role of different fibrillar collagen arrays in modifying breast cancer cell shape, inducing epithelial-to-mesenchymal transition, changing matrix composition and modulating the production of extracellular vesicles. Further investigation utilizing this in vitro model will help to demonstrate the biological roles of matrix macromolecules in cancer cell invasion in vivo.

19.
J Transl Med ; 17(1): 12, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30616602

ABSTRACT

BACKGROUND: The epithelial to mesenchymal transition (EMT) is a multi-factorial biological mechanism involved in renal and hepatic fibrosis and the IL-1 beta has been assumed as a mediator of this process although data are not exhaustive. Therefore, the aim of our study was to evaluate the role of this cytokine in the EMT of renal proximal tubular epithelial cells (HK-2) and stellate cells (LX-2) and the protective/anti-fibrotic effect of its inhibition by Canakinumab (a specific human monoclonal antibody targeted against IL-1beta). METHODS: Both cell types were treated with IL-1 beta (10 ng/ml) for 6 and 24 h with and without Canakinumab (5 µg/ml). As control we used TGF-beta (10 ng/ml). Expression of EMT markers (vimentin, alpha-SMA, fibronectin) were evaluated through western blotting and immunofluorescence. Genes expression for matrix metalloproteinases (MMP)-2 was measured by Real-Time PCR and enzymatic activity by zymography. Cellular motility was assessed by scratch assay. RESULTS: IL-1 beta induced a significant up-regulation of EMT markers in both cell types and increased the MMP-2 protein expression and enzymatic activity, similarly to TGF-beta. Moreover, IL-1 beta induced a higher rate of motility in HK-2. Canakinumab prevented all these modifications in both cell types. CONCLUSIONS: Our results clearly demonstrate the role of IL-1 beta in the EMT of renal/stellate cells and it underlines, for the first time, the therapeutic potential of its specific inhibition on the prevention/minimization of organ fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Hepatic Stellate Cells/pathology , Interleukin-1beta/pharmacology , Kidney Tubules/pathology , Antibodies, Monoclonal, Humanized/pharmacology , Biomarkers/metabolism , Cell Line , Cell Movement/drug effects , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/enzymology , Humans , Kidney Tubules/drug effects , Kidney Tubules/enzymology , Matrix Metalloproteinase 2/metabolism , Transforming Growth Factor beta1/pharmacology
20.
Matrix Biol Plus ; 3: 100008, 2019 Aug.
Article in English | MEDLINE | ID: mdl-33543007

ABSTRACT

High levels of hyaluronan (ΗΑ), a major extracellular matrix (ECM) glycosaminoglycan, have been correlated with poor clinical outcome in several malignancies, including breast cancer. The high and low molecular weight HΑ forms exert diverse biological functions. Depending on their molecular size, ΗΑ forms either promote or attenuate signaling cascades that regulate cancer progression. In order to evaluate the effects of different ΗΑ forms on breast cancer cells' behavior, ΗΑ fragments of defined molecular size were synthesized. Breast cancer cells of different estrogen receptor (ER) status - the low metastatic, ERα-positive MCF-7 epithelial cells and the highly aggressive, ERß-positive MDA-MB-231 mesenchymal cells - were evaluated following treatment with HA fragments. Scanning electron microscopy revealed that HA fragments critically affect the morphology of breast cancer cells in a molecular-size dependent mode. Moreover, the ΗΑ fragments affect cell functional properties, the expression of major ECM mediators and epithelial-to-mesenchymal transition (ΕΜΤ) markers. Notably, treatment with 200 kDa ΗΑ increased the expression levels of the epithelial marker Ε-cadherin and reduced the expression levels of HA synthase 2 and mesenchymal markers, like fibronectin and snail2/slug. These novel data suggest that the effects of HA in breast cancer cells depend on the molecular size and the ER status. An in-depth understanding on the mechanistic basis of these effects may contribute on the development of novel therapeutic strategies for the pharmacological targeting of aggressive breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...