Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5356, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438449

ABSTRACT

Deterministic sources of quantum light (i.e. single photons or pairs of entangled photons) are required for a whole host of applications in quantum technology, including quantum imaging, quantum cryptography and the long-distance transfer of quantum information in future quantum networks. Semiconductor quantum dots are ideal candidates for solid-state quantum emitters as these artificial atoms have large dipole moments and a quantum confined energy level structure, enabling the realization of single photon sources with high repetition rates and high single photon purity. Quantum dots may also be triggered using a laser pulse for on-demand operation. The naturally-occurring size variations in ensembles of quantum dots offers the potential to increase the bandwidth of quantum communication systems through wavelength-division multiplexing, but conventional laser triggering schemes based on Rabi rotations are ineffective when applied to inequivalent emitters. Here we report the demonstration of the simultaneous triggering of >10 quantum dots using adiabatic rapid passage. We show that high-fidelity quantum state inversion is possible in a system of quantum dots with a 15 meV range of optical transition energies using a single broadband, chirped laser pulse, laying the foundation for high-bandwidth, multiplexed quantum networks.

2.
Tomography ; 6(4): 362-372, 2020 12.
Article in English | MEDLINE | ID: mdl-33364426

ABSTRACT

We aim to extend the use of image quality metrics (IQMs) from static magnetic resonance imaging (MRI) applications to dynamic MRI studies. We assessed the use of 2 IQMs, the root mean square error and structural similarity index, in evaluating the reconstruction of quantitative dynamic contrast-enhanced (DCE) MRI data acquired using golden-angle sampling and compressed sensing (CS). To address the difficulty of obtaining ground-truth knowledge of parameters describing dynamics in real patient data, we developed a Matlab simulation framework to assess quantitative CS-DCE-MRI. We began by validating the response of each IQM to the CS-MRI reconstruction process using static data and the performance of our simulation framework with simple dynamic data. We then extended the simulations to the more realistic extended Tofts model. When assessing the Tofts model, we tested 4 different methods of selecting a reference image for the IQMs. Results from the retrospective static CS-MRI reconstructions showed that each IQM is responsive to the CS-MRI reconstruction process. Simulations of a simple contrast evolution model validated the performance of our framework. Despite the complexity of the Tofts model, both IQM scores correlated well with the recovery accuracy of a central model parameter for all reference cases studied. This finding may form the basis of algorithms for automated selection of image reconstruction aspects, such as temporal resolution, in golden-angle-sampled CS-DCE-MRI. These further suggest that objective measures of image quality may find use in general dynamic MRI applications.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Algorithms , Humans , Phantoms, Imaging , Retrospective Studies
3.
IEEE Trans Med Imaging ; 39(4): 1064-1072, 2020 04.
Article in English | MEDLINE | ID: mdl-31535985

ABSTRACT

Image quality metrics (IQMs) such as root mean square error (RMSE) and structural similarity index (SSIM) are commonly used in the evaluation and optimization of accelerated magnetic resonance imaging (MRI) acquisition and reconstruction strategies. However, it is unknown how well these indices relate to a radiologist's perception of diagnostic image quality. In this study, we compare the image quality scores of five radiologists with the RMSE, SSIM, and other potentially useful IQMs: peak signal to noise ratio (PSNR) multi-scale SSIM (MSSSIM), information-weighted SSIM (IWSSIM), gradient magnitude similarity deviation (GMSD), feature similarity index (FSIM), high dynamic range visible difference predictor (HDRVDP), noise quality metric (NQM), and visual information fidelity (VIF). The comparison uses a database of MR images of the brain and abdomen that have been retrospectively degraded by noise, blurring, undersampling, motion, and wavelet compression for a total of 414 degraded images. A total of 1017 subjective scores were assigned by five radiologists. IQM performance was measured via the Spearman rank order correlation coefficient (SROCC) and statistically significant differences in the residuals of the IQM scores and radiologists' scores were tested. When considering SROCC calculated from combining scores from all radiologists across all image types, RMSE and SSIM had lower SROCC than six of the other IQMs included in the study (VIF, FSIM, NQM, GMSD, IWSSIM, and HDRVDP). In no case did SSIM have a higher SROCC or significantly smaller residuals than RMSE. These results should be considered when choosing an IQM in future imaging studies.


Subject(s)
Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Abdomen/diagnostic imaging , Algorithms , Brain/diagnostic imaging , Humans , Models, Statistical , Radiologists , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL