Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38733006

ABSTRACT

Electrochemical measurements are vital to a wide range of applications such as air quality monitoring, biological testing, food industry, and more. Integrated circuits have been used to implement miniaturized and low-power electrochemical potentiostats that are suitable for wearable devices. However, employing modern integrated circuit technologies with low supply voltage precludes the utilization of electrochemical reactions that require a higher potential window. In this paper, we present a novel circuit architecture that utilizes dynamic voltage at the working electrode of an electrochemical cell to effectively enhance the supported voltage range compared to traditional designs, increasing the cell voltage range by 46% and 88% for positive and negative cell voltages, respectively. In return, this facilitates a wider range of bias voltages in an electrochemical cell, and, therefore, opens integrated microsystems to a broader class of electrochemical reactions. The circuit was implemented in 180 nm technology and consumes 2.047 mW of power. It supports a bias potential range of 1.1 V to -2.12 V and cell potential range of 2.41 V to -3.11 V that is nearly double the range in conventional designs.

2.
Proc Natl Acad Sci U S A ; 121(16): e2313440121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38578985

ABSTRACT

Developmental phenotypic changes can evolve under selection imposed by age- and size-related ecological differences. Many of these changes occur through programmed alterations to gene expression patterns, but the molecular mechanisms and gene-regulatory networks underlying these adaptive changes remain poorly understood. Many venomous snakes, including the eastern diamondback rattlesnake (Crotalus adamanteus), undergo correlated changes in diet and venom expression as snakes grow larger with age, providing models for identifying mechanisms of timed expression changes that underlie adaptive life history traits. By combining a highly contiguous, chromosome-level genome assembly with measures of expression, chromatin accessibility, and histone modifications, we identified cis-regulatory elements and trans-regulatory factors controlling venom ontogeny in the venom glands of C. adamanteus. Ontogenetic expression changes were significantly correlated with epigenomic changes within genes, immediately adjacent to genes (e.g., promoters), and more distant from genes (e.g., enhancers). We identified 37 candidate transcription factors (TFs), with the vast majority being up-regulated in adults. The ontogenetic change is largely driven by an increase in the expression of TFs associated with growth signaling, transcriptional activation, and circadian rhythm/biological timing systems in adults with corresponding epigenomic changes near the differentially expressed venom genes. However, both expression activation and repression contributed to the composition of both adult and juvenile venoms, demonstrating the complexity and potential evolvability of gene regulation for this trait. Overall, given that age-based trait variation is common across the tree of life, we provide a framework for understanding gene-regulatory-network-driven life-history evolution more broadly.


Subject(s)
Crotalid Venoms , Venomous Snakes , Animals , Crotalid Venoms/genetics , Crotalid Venoms/metabolism , Epigenomics , Crotalus/genetics , Crotalus/metabolism
3.
Micromachines (Basel) ; 15(3)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542652

ABSTRACT

To non-invasively monitor personal biological and environmental samples in Internet of Things (IoT)-based wearable microfluidic sensing applications, the particle size could be key to sensing, which emphasizes the need for particle size fractionation. Deterministic lateral displacement (DLD) is a microfluidic structure that has shown great potential for the size fractionation of micro- and nano-sized particles. This paper introduces a new externally balanced multi-section cascade DLD approach with a section-scaling technique aimed at expanding the dynamic range of particle size separation. To analyze the design tradeoffs of this new approach, a robust model that also accounts for practical fabrication limits is presented, enabling designers to visualize compromises between the overall device size and the achievement of various performance goals. Furthermore, results show that a wide variety of size fractionation ranges and size separation resolutions can be achieved by cascading multiple sections of an increasingly smaller gap size and critical separation dimension. Model results based on DLD theoretical equations are first presented, followed by model results that apply the scaling restrictions associated with the second order of effects, including practical fabrication limits, the gap/pillar size ratio, and pillar shape.

4.
Proc Natl Acad Sci U S A ; 120(43): e2303043120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37844221

ABSTRACT

Theory predicts that genetic erosion in small, isolated populations of endangered species can be assessed using estimates of neutral genetic variation, yet this widely used approach has recently been questioned in the genomics era. Here, we leverage a chromosome-level genome assembly of an endangered rattlesnake (Sistrurus catenatus) combined with whole genome resequencing data (N = 110 individuals) to evaluate the relationship between levels of genome-wide neutral and functional diversity over historical and future timescales. As predicted, we found positive correlations between genome-wide estimates of neutral genetic diversity (π) and inferred levels of adaptive variation and an estimate of inbreeding mutation load, and a negative relationship between neutral diversity and an estimate of drift mutation load. However, these correlations were half as strong for projected future levels of neutral diversity based on contemporary effective population sizes. Broadly, our results confirm that estimates of neutral genetic diversity provide an accurate measure of genetic erosion in populations of a threatened vertebrate. They also provide nuance to the neutral-functional diversity controversy by suggesting that while these correlations exist, anthropogenetic impacts may have weakened these associations in the recent past and into the future.


Subject(s)
Crotalus , Genetic Variation , Humans , Animals , Crotalus/genetics , Genome/genetics , Genomics/methods , Inbreeding , Endangered Species
5.
J Mol Evol ; 91(4): 514-535, 2023 08.
Article in English | MEDLINE | ID: mdl-37269364

ABSTRACT

Snake venom can vary both among and within species. While some groups of New World pitvipers-such as rattlesnakes-have been well studied, very little is known about the venom of montane pitvipers (Cerrophidion) found across the Mesoamerican highlands. Compared to most well-studied rattlesnakes, which are widely distributed, the isolated montane populations of Cerrophidion may facilitate unique evolutionary trajectories and venom differentiation. Here, we describe the venom gland transcriptomes for populations of C. petlalcalensis, C. tzotzilorum, and C. godmani from Mexico, and a single individual of C. sasai from Costa Rica. We explore gene expression variation in Cerrophidion and sequence evolution of toxins within C. godmani specifically. Cerrophidion venom gland transcriptomes are composed primarily of snake venom metalloproteinases, phospholipase A[Formula: see text]s (PLA[Formula: see text]s), and snake venom serine proteases. Cerrophidion petlalcalensis shows little intraspecific variation; however, C. godmani and C. tzotzilorum differ significantly between geographically isolated populations. Interestingly, intraspecific variation was mostly attributed to expression variation as we did not detect signals of selection within C. godmani toxins. Additionally, we found PLA[Formula: see text]-like myotoxins in all species except C. petlalcalensis, and crotoxin-like PLA[Formula: see text]s in the southern population of C. godmani. Our results demonstrate significant intraspecific venom variation within C. godmani and C. tzotzilorum. The toxins of C. godmani show little evidence of directional selection where variation in toxin sequence is consistent with evolution under a model of mutation-drift equilibrium. Cerrophidion godmani individuals from the southern population may exhibit neurotoxic venom activity given the presence of crotoxin-like PLA[Formula: see text]s; however, further research is required to confirm this hypothesis.


RESUMEN: El veneno de las serpientes puede variar entre y dentro de las especies. Mientras algunos grupos de viperidos del Nuevo Mundo­como las cascabeles­han sido bien estudiadas, muy poco se sabe acerca del veneno de las nauyacas de frío (Cerrophidion) que se encuentran en las zonas altas de Mesoamérica. Comparadas con las extensamente estudiadas cascabeles, que estan ampliamente distribuidas, las poblaciones de Cerrophidion, aisladas en montañas, pueden poseer trayectorias evolutivas y diferenciación en su veneno unicos. En el presente trabajo, describimos el transcriptoma de las glándulas de veneno de poblaciones de C. petlalcalensis, C. tzotzilorum, y C. godmani de México, y un individuo de C. sasai de Costa Rica. Exploramos la variación en la expresión de toxinas en Cerrophidion y la evolución en las secuencias geneticas en C. godmani específicamente. El transcriptoma de la glándula de veneno de Cerrophidion esta compuesto principalmente de Metaloproteinasas de Veneno de Serpiente, Fosfolipasas A[Formula: see text] (PLA[Formula: see text]s), y Serin Proteasas de Veneno de Serpiente. Cerrophidion petlalcalensis presenta poca variación intraespecífica; sin embargo, los transcriptomas de la glandula de veneno de C. godmani y C. tzotzilorum difieren significativamente entre poblaciones geográficamente aisladas. Curiosamente, la variación intraespecífica estuvo atribuida principalmente a la expresión de las toxinas ya que no encontramos señales de selección en las toxinas de C. godmani. Adicionalmente, encontramos miotoxinas similares a PLA[Formula: see text] en todas las especies excepto C. petlalcalensis, y PLA[Formula: see text]s similares a crotoxina en la población sureña de C. godmani. Nuestros resultados demuestran la presencia de variacion intraespecífica presente en el veneno de C. godmani y C. tzotzilorum. Las toxinas de Cerrophidion godmani muestran poca evidencia de selección direccional, y la variación en la secuencias de las toxinas es consistente con evolucion bajo un modelo de equilibrio de mutación-deriva. Algunos individuos de C. godmani de la población del sur potencialmente tienen un veneno neurotóxico dada la presencia de PLA[Formula: see text]s similares a la crotoxina, sin embargo, se necesita más evidencia para corroborar esta hipótesis.


Subject(s)
Crotalid Venoms , Crotalinae , Crotoxin , Viperidae , Humans , Animals , Crotalinae/genetics , Crotalinae/metabolism , Viperidae/metabolism , Crotoxin/metabolism , Crotalid Venoms/genetics , Crotalid Venoms/metabolism , Crotalid Venoms/toxicity , Snake Venoms/metabolism , Polyesters/metabolism
6.
Proc Biol Sci ; 289(1982): 20221132, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36300520

ABSTRACT

Traits for prey acquisition form the phenotypic interface of predator-prey interactions. In venomous predators, morphological variation in venom delivery apparatus like fangs and stingers may be optimized for dispatching prey. Here, we determine how a single dimension of venom injection systems evolves in response to variation in the size, climatic conditions and dietary ecology of viperid snakes. We measured fang length in more than 1900 museum specimens representing 199 viper species (55% of recognized species). We find both phylogenetic signal and within-clade variation in relative fang length across vipers suggesting both general taxonomic trends and potential adaptive divergence in fang length. We recover positive evolutionary allometry and little static allometry in fang length. Proportionally longer fangs have evolved in larger species, which may facilitate venom injection in more voluminous prey. Finally, we leverage climatic and diet data to assess the global correlates of fang length. We find that models of fang length evolution are improved through the inclusion of both temperature and diet, particularly the extent to which diets are mammal-heavy diets. These findings demonstrate how adaptive variation can emerge among components of complex prey capture systems.


Subject(s)
Tooth , Viperidae , Animals , Phylogeny , Tooth/anatomy & histology , Viperidae/anatomy & histology , Venoms , Diet , Mammals
7.
Nat Commun ; 13(1): 3911, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853849

ABSTRACT

The influence of climate change on civil conflict and societal instability in the premodern world is a subject of much debate, in part because of the limited temporal or disciplinary scope of case studies. We present a transdisciplinary case study that combines archeological, historical, and paleoclimate datasets to explore the dynamic, shifting relationships among climate change, civil conflict, and political collapse at Mayapan, the largest Postclassic Maya capital of the Yucatán Peninsula in the thirteenth and fourteenth centuries CE. Multiple data sources indicate that civil conflict increased significantly and generalized linear modeling correlates strife in the city with drought conditions between 1400 and 1450 cal. CE. We argue that prolonged drought escalated rival factional tensions, but subsequent adaptations reveal regional-scale resiliency, ensuring that Maya political and economic structures endured until European contact in the early sixteenth century CE.


Subject(s)
Climate Change , Droughts , Acclimatization , Archaeology
8.
Genome Biol Evol ; 14(7)2022 07 02.
Article in English | MEDLINE | ID: mdl-35670514

ABSTRACT

Despite the medical significance to humans and important ecological roles filled by vipers, few high-quality genomic resources exist for these snakes outside of a few genera of pitvipers. Here we sequence, assemble, and annotate the genome of Fea's Viper (Azemiops feae). This taxon is distributed in East Asia and belongs to a monotypic subfamily, sister to the pitvipers. The newly sequenced genome resulted in a 1.56 Gb assembly, a contig N50 of 1.59 Mb, with 97.6% of the genome assembly in contigs >50 Kb, and a BUSCO completeness of 92.4%. We found that A. feae venom is primarily composed of phospholipase A2 (PLA2) proteins expressed by genes that likely arose from lineage-specific PLA2 gene duplications. Additionally, we show that renin, an enzyme associated with blood pressure regulation in mammals and known from the venoms of two viper species including A. feae, is expressed in the venom gland at comparative levels to known toxins and is present in the venom proteome. The cooption of this gene as a toxin may be more widespread in viperids than currently known. To investigate the historical population demographics of A. feae, we performed coalescent-based analyses and determined that the effective population size has remained stable over the last 100 kyr. This suggests Quaternary glacial cycles likely had minimal influence on the demographic history of A. feae. This newly assembled genome will be an important resource for studying the genomic basis of phenotypic evolution and understanding the diversification of venom toxin gene families.


Subject(s)
Gene Duplication , Viperidae , Animals , Humans , Mammals , Phospholipases A2/genetics , Phospholipases A2/metabolism , Proteome/metabolism , Venoms/metabolism , Viperidae/genetics
9.
Toxins (Basel) ; 14(4)2022 03 25.
Article in English | MEDLINE | ID: mdl-35448846

ABSTRACT

Interspecific differences in snake venom compositions can result from distinct regulatory mechanisms acting in each species. However, comparative analyses focusing on identifying regulatory elements and patterns that led to distinct venom composition are still scarce. Among venomous snakes, Bothrops cotiara and Bothrops fonsecai represent ideal models to complement our understanding of the regulatory mechanisms of venom production. These recently diverged species share a similar specialized diet, habitat, and natural history, but each presents a distinct venom phenotype. Here, we integrated data from the venom gland transcriptome and miRNome and the venom proteome of B. fonsecai and B. cotiara to better understand the regulatory mechanisms that may be acting to produce differing venom compositions. We detected not only the presence of similar toxin isoforms in both species but also distinct expression profiles of phospholipases A2 (PLA2) and some snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) isoforms. We found evidence of modular expression regulation of several toxin isoforms implicated in venom divergence and observed correlated expression of several transcription factors. We did not find strong evidence for miRNAs shaping interspecific divergence of the venom phenotypes, but we identified a subset of toxin isoforms whose final expression may be fine-tuned by specific miRNAs. Sequence analysis on orthologous toxins showed a high rate of substitutions between PLA2s, which indicates that these toxins may be under strong positive selection or represent paralogous toxins in these species. Our results support other recent studies in suggesting that gene regulation is a principal mode of venom evolution across recent timescales, especially among species with conserved ecotypes.


Subject(s)
Bothrops , Crotalid Venoms , MicroRNAs , Toxins, Biological , Animals , Bothrops/genetics , Bothrops/metabolism , Brazil , Crotalid Venoms/genetics , Crotalid Venoms/metabolism , MicroRNAs/metabolism , Phospholipases A2/genetics , Phospholipases A2/metabolism , Snake Venoms/metabolism , Toxins, Biological/metabolism
10.
Mol Biol Evol ; 39(4)2022 04 10.
Article in English | MEDLINE | ID: mdl-35413123

ABSTRACT

Understanding the joint roles of protein sequence variation and differential expression during adaptive evolution is a fundamental, yet largely unrealized goal of evolutionary biology. Here, we use phylogenetic path analysis to analyze a comprehensive venom-gland transcriptome dataset spanning three genera of pitvipers to identify the functional genetic basis of a key adaptation (venom complexity) linked to diet breadth (DB). The analysis of gene-family-specific patterns reveals that, for genes encoding two of the most important venom proteins (snake venom metalloproteases and snake venom serine proteases), there are direct, positive relationships between sequence diversity (SD), expression diversity (ED), and increased DB. Further analysis of gene-family diversification for these proteins showed no constraint on how individual lineages achieved toxin gene SD in terms of the patterns of paralog diversification. In contrast, another major venom protein family (PLA2s) showed no relationship between venom molecular diversity and DB. Additional analyses suggest that other molecular mechanisms-such as higher absolute levels of expression-are responsible for diet adaptation involving these venom proteins. Broadly, our findings argue that functional diversity generated through sequence and expression variations jointly determine adaptation in the key components of pitviper venoms, which mediate complex molecular interactions between the snakes and their prey.


Subject(s)
Snake Venoms , Snakes , Adaptation, Physiological/genetics , Animals , Diet , Phylogeny , Snake Venoms/genetics , Snakes/metabolism
11.
Toxins, v. 14, n. 4, p. 237, 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4313

ABSTRACT

Interspecific differences in snake venom compositions can result from distinct regulatory mechanisms acting in each species. However, comparative analyses focusing on identifying regulatory elements and patterns that led to distinct venom composition are still scarce. Among venomous snakes, Bothrops cotiara and Bothrops fonsecai represent ideal models to complement our understanding of the regulatory mechanisms of venom production. These recently diverged species share a similar specialized diet, habitat, and natural history, but each presents a distinct venom phenotype. Here, we integrated data from the venom gland transcriptome and miRNome and the venom proteome of B. fonsecai and B. cotiara to better understand the regulatory mechanisms that may be acting to produce differing venom compositions. We detected not only the presence of similar toxin isoforms in both species but also distinct expression profiles of phospholipases A2 (PLA2) and some snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) isoforms. We found evidence of modular expression regulation of several toxin isoforms implicated in venom divergence and observed correlated expression of several transcription factors. We did not find strong evidence for miRNAs shaping interspecific divergence of the venom phenotypes, but we identified a subset of toxin isoforms whose final expression may be fine-tuned by specific miRNAs. Sequence analysis on orthologous toxins showed a high rate of substitutions between PLA2s, which indicates that these toxins may be under strong positive selection or represent paralogous toxins in these species. Our results support other recent studies in suggesting that gene regulation is a principal mode of venom evolution across recent timescales, especially among species with conserved ecotypes.

12.
Toxins (Basel) ; 13(5)2021 05 06.
Article in English | MEDLINE | ID: mdl-34066626

ABSTRACT

The venoms of small rear-fanged snakes (RFS) remain largely unexplored, despite increased recognition of their importance in understanding venom evolution more broadly. Sequencing the transcriptome of venom-producing glands has greatly increased the ability of researchers to examine and characterize the toxin repertoire of small taxa with low venom yields. Here, we use RNA-seq to characterize the Duvernoy's gland transcriptome of the Plains Black-headed Snake, Tantilla nigriceps, a small, semi-fossorial colubrid that feeds on a variety of potentially dangerous arthropods including centipedes and spiders. We generated transcriptomes of six individuals from three localities in order to both characterize the toxin expression of this species for the first time, and to look for initial evidence of venom variation in the species. Three toxin families-three-finger neurotoxins (3FTxs), cysteine-rich secretory proteins (CRISPs), and snake venom metalloproteinases (SVMPIIIs)-dominated the transcriptome of T. nigriceps; 3FTx themselves were the dominant toxin family in most individuals, accounting for as much as 86.4% of an individual's toxin expression. Variation in toxin expression between individuals was also noted, with two specimens exhibiting higher relative expression of c-type lectins than any other sample (8.7-11.9% compared to <1%), and another expressed CRISPs higher than any other toxin. This study provides the first Duvernoy's gland transcriptomes of any species of Tantilla, and one of the few transcriptomic studies of RFS not predicated on a single individual. This initial characterization demonstrates the need for further study of toxin expression variation in this species, as well as the need for further exploration of small RFS venoms.


Subject(s)
Colubridae/metabolism , Snake Venoms/metabolism , Toxins, Biological/metabolism , Transcriptome , Animals , Colubridae/genetics , Metalloproteases/genetics , Metalloproteases/metabolism , Toxins, Biological/genetics
13.
Adv Mater ; 33(20): e2007764, 2021 May.
Article in English | MEDLINE | ID: mdl-33829545

ABSTRACT

Soil sensors and plant wearables play a critical role in smart and precision agriculture via monitoring real-time physical and chemical signals in the soil, such as temperature, moisture, pH, and pollutants and providing key information to optimize crop growth circumstances, fight against biotic and abiotic stresses, and enhance crop yields. Herein, the recent advances of the important soil sensors in agricultural applications, including temperature sensors, moisture sensors, organic matter compounds sensors, pH sensors, insect/pest sensors, and soil pollutant sensors are reviewed. Major sensing technologies, designs, performance, and pros and cons of each sensor category are highlighted. Emerging technologies such as plant wearables and wireless sensor networks are also discussed in terms of their applications in precision agriculture. The research directions and challenges of soil sensors and intelligent agriculture are finally presented.


Subject(s)
Soil , Agriculture , Wireless Technology
14.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33875585

ABSTRACT

The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear. We tested alternative hypotheses linking venom complexity and ecological sources of selection from diet in the largest clade of front-fanged venomous snakes in North America: the rattlesnakes, copperheads, cantils, and cottonmouths. We generated independent transcriptomic and proteomic measures of venom complexity and collated several natural history studies to quantify dietary variation. We then constructed genome-scale phylogenies for these snakes for comparative analyses. Strikingly, prey phylogenetic diversity was more strongly correlated to venom complexity than was overall prey species diversity, specifically implicating prey species' divergence, rather than the number of lineages alone, in the evolution of complexity. Prey phylogenetic diversity further predicted transcriptomic complexity of three of the four largest gene families in viper venom, showing that complexity evolution is a concerted response among many independent gene families. We suggest that the phylogenetic diversity of prey measures functionally relevant divergence in the targets of venom, a claim supported by sequence diversity in the coagulation cascade targets of venom. Our results support the general concept that the diversity of species in an ecological community is more important than their overall number in determining evolutionary patterns in predator trait complexity.


Subject(s)
Crotalinae/genetics , Diet/trends , Snake Venoms/genetics , Adaptation, Biological/genetics , Animals , Crotalinae/metabolism , Diet/veterinary , Gene Expression/genetics , North America , Phylogeny , Predatory Behavior/physiology , Proteomics/methods , Selection, Genetic/genetics , Snake Venoms/metabolism , Tooth/metabolism , Transcriptome/genetics
15.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: mdl-33866357

ABSTRACT

MOTIVATION: Next-generation sequencing has become exceedingly common and has transformed our ability to explore nonmodel systems. In particular, transcriptomics has facilitated the study of venom and evolution of toxins in venomous lineages; however, many challenges remain. Primarily, annotation of toxins in the transcriptome is a laborious and time-consuming task. Current annotation software often fails to predict the correct coding sequence and overestimates the number of toxins present in the transcriptome. Here, we present ToxCodAn, a python script designed to perform precise annotation of snake venom gland transcriptomes. We test ToxCodAn with a set of previously curated transcriptomes and compare the results to other annotators. In addition, we provide a guide for venom gland transcriptomics to facilitate future research and use Bothrops alternatus as a case study for ToxCodAn and our guide. RESULTS: Our analysis reveals that ToxCodAn provides precise annotation of toxins present in the transcriptome of venom glands of snakes. Comparison with other annotators demonstrates that ToxCodAn has better performance with regard to run time ($>20x$ faster), coding sequence prediction ($>3x$ more accurate) and the number of toxins predicted (generating $>4x$ less false positives). In this sense, ToxCodAn is a valuable resource for toxin annotation. The ToxCodAn framework can be expanded in the future to work with other venomous lineages and detect novel toxins.


Subject(s)
Algorithms , Computational Biology/methods , Gene Expression Profiling/methods , Snake Venoms/genetics , Snakes/genetics , Toxins, Biological/genetics , Animals , High-Throughput Nucleotide Sequencing/methods , Phylogeny , Snake Venoms/chemistry , Snake Venoms/metabolism , Snakes/classification , Snakes/metabolism , Species Specificity , Toxins, Biological/chemistry , Toxins, Biological/metabolism
16.
IEEE Trans Biomed Circuits Syst ; 15(1): 2-28, 2021 02.
Article in English | MEDLINE | ID: mdl-33606635

ABSTRACT

A person's behavior significantly influences their health and well-being. It also contributes to the social environment in which humans interact, with cascading impacts to the health and behaviors of others. During social interactions, our understanding and awareness of vital nonverbal messages expressing beliefs, emotions, and intentions can be obstructed by a variety of factors including greatly flawed self-awareness. For these reasons, human behavior is a very important topic to study using the most advanced technology. Moreover, technology offers a breakthrough opportunity to improve people's social awareness and self-awareness through machine-enhanced recognition and interpretation of human behaviors. This paper reviews (1) the social psychology theories that have established the framework to study human behaviors and their manifestations during social interactions and (2) the technologies that have contributed to the monitoring of human behaviors. State-of-the-art in sensors, signal features, and computational models are categorized, summarized, and evaluated from a comprehensive transdisciplinary perspective. This review focuses on assessing technologies most suitable for real-time monitoring while highlighting their challenges and opportunities in near-future applications. Although social behavior monitoring has been highly reported in psychology and engineering literature, this paper uniquely aims to serve as a disciplinary convergence bridge and a guide for engineers capable of bringing new technologies to bear against the current challenges in real-time human behavior monitoring.


Subject(s)
Technology , Emotions , Humans , Intention , Monitoring, Physiologic
17.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468678

ABSTRACT

Variation in gene regulation is ubiquitous, yet identifying the mechanisms producing such variation, especially for complex traits, is challenging. Snake venoms provide a model system for studying the phenotypic impacts of regulatory variation in complex traits because of their genetic tractability. Here, we sequence the genome of the Tiger Rattlesnake, which possesses the simplest and most toxic venom of any rattlesnake species, to determine whether the simple venom phenotype is the result of a simple genotype through gene loss or a complex genotype mediated through regulatory mechanisms. We generate the most contiguous snake-genome assembly to date and use this genome to show that gene loss, chromatin accessibility, and methylation levels all contribute to the production of the simplest, most toxic rattlesnake venom. We provide the most complete characterization of the venom gene-regulatory network to date and identify key mechanisms mediating phenotypic variation across a polygenic regulatory network.


Subject(s)
Crotalid Venoms/genetics , Crotalus/genetics , Genome/genetics , Molecular Sequence Annotation , Animals , Gene Expression Regulation/genetics , Genotype , Transcriptome/genetics , Whole Genome Sequencing
18.
Mol Biol Evol ; 38(3): 745-760, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33035326

ABSTRACT

The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differences; however, the exact traits under selection are often unknown. The transition from freshwater to saltwater habitats provides strong selection targeting traits with osmoregulatory function. Several lineages of North American watersnakes (Nerodia spp.) are known to occur in saltwater habitat and represent a useful system for studying speciation by providing an opportunity to investigate gene flow and evaluate how species boundaries are maintained or degraded. We use double digest restriction-site associated DNA sequencing to characterize the migration-selection balance and test for evidence of ecological divergence within the Nerodia fasciata-clarkii complex in Florida. We find evidence of high intraspecific gene flow with a pattern of isolation-by-distance underlying subspecific lineages. However, we identify genetic structure indicative of reduced gene flow between inland and coastal lineages suggesting divergence due to isolation-by-environment. This pattern is consistent with observed environmental differences where the amount of admixture decreases with increased salinity. Furthermore, we identify significantly enriched terms related to osmoregulatory function among a set of candidate loci, including several genes that have been previously implicated in adaptation to salinity stress. Collectively, our results demonstrate that ecological differences, likely driven by salinity, cause strong divergent selection which promotes divergence in the N. fasciata-clarkii complex despite significant gene flow.


Subject(s)
Adaptation, Biological , Biological Evolution , Gene Flow , Salt Tolerance/genetics , Snakes/genetics , Animals , Ecosystem , Florida , Selection, Genetic , Snakes/anatomy & histology
19.
Proc Natl Acad Sci U S A, v. 118, n. 17, e2015579118, abr. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4362

ABSTRACT

The role of natural selection in the evolution of trait complex-ity can be characterized by testing hypothesized links betweencomplex forms and their functions across species. Predatory ven-oms are composed of multiple proteins that collectively function toincapacitate prey. Venom complexity fluctuates over evolutionarytimescales, with apparent increases and decreases in complexity,and yet the causes of this variation are unclear. We tested alterna-tive hypotheses linking venom complexity and ecological sourcesof selection from diet in the largest clade of front-fanged ven-omous snakes in North America: the rattlesnakes, copperheads,cantils, and cottonmouths. We generated independent transcrip-tomic and proteomic measures of venom complexity and collatedseveral natural history studies to quantify dietary variation. Wethen constructed genome-scale phylogenies for these snakes forcomparative analyses. Strikingly, prey phylogenetic diversity wasmore strongly correlated to venom complexity than was overallprey species diversity, specifically implicating prey species’ diver-gence, rather than the number of lineages alone, in the evolutionof complexity. Prey phylogenetic diversity further predicted tran-scriptomic complexity of three of the four largest gene familiesin viper venom, showing that complexity evolution is a concertedresponse among many independent gene families. We suggest thatthe phylogenetic diversity of prey measures functionally relevantdivergence in the targets of venom, a claim supported by sequencediversity in the coagulation cascade targets of venom. Our resultssupport the general concept that the diversity of species in an eco-logical community is more important than their overall number indetermining evolutionary patterns in predator trait complexity.

20.
Brief Bioinform, v. 22, n. 5, p. 1–16, abr. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3670

ABSTRACT

Motivation: Next-generation sequencing has become exceedingly common and has transformed our ability to explore nonmodel systems. In particular, transcriptomics has facilitated the study of venom and evolution of toxins in venomous lineages; however, many challenges remain. Primarily, annotation of toxins in the transcriptome is a laborious and time-consuming task. Current annotation software often fails to predict the correct coding sequence and overestimates the number of toxins present in the transcriptome. Here, we present ToxCodAn, a python script designed to perform precise annotation of snake venom gland transcriptomes. We test ToxCodAn with a set of previously curated transcriptomes and compare the results to other annotators. In addition, we provide a guide for venom gland transcriptomics to facilitate future research and use Bothrops alternatus as a case study for ToxCodAn and our guide. Results: Our analysis reveals that ToxCodAn provides precise annotation of toxins present in the transcriptome of venom glands of snakes. Comparison with other annotators demonstrates that ToxCodAn has better performance with regard to run time (⁠>20x faster), coding sequence prediction (⁠>3x more accurate) and the number of toxins predicted (generating >4x less false positives). In this sense, ToxCodAn is a valuable resource for toxin annotation. The ToxCodAn framework can be expanded in the future to work with other venomous lineages and detect novel toxins.

SELECTION OF CITATIONS
SEARCH DETAIL
...