Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Med Sci Sports ; 28(5): 1586-1593, 2018 May.
Article in English | MEDLINE | ID: mdl-29350429

ABSTRACT

The purpose of this study was to examine the propulsion asymmetries of wheelchair athletes while sprinting on an instrumented, dual-roller ergometer system. Eighteen experienced wheelchair rugby players (8 low point (LP) (class ≤1.5) and 10 high point (HP) (class ≥2.0)) performed a 15-second sprint in their sports wheelchair on the instrumented ergometer. Asymmetry was defined as the difference in distance and power output (PO) between left and right sides when the best side reached 28 m. Propulsion techniques were quantified based on torque and velocity data. HP players covered an average 3 m further than the LP players (P = .002) and achieved faster sprint times than LP players (6.95 ± 0.89 vs 8.03 ± 0.68 seconds, P = .005) and at the time the best player finished (5.96 seconds). Higher peak POs (667 ± 108 vs 357 ± 78 W, P = .0001) and greater peak speeds that were also evident were for HP players (4.80 ± 0.71 vs 4.09 ± 0.45 m/s, P = .011). Greater asymmetries were found in HP players for distance (1.86 ± 1.43 vs 0.70 ± 0.65 m, P = .016), absolute peak PO (P = .049), and speed (0.35 ± 0.25 vs 0.11 ± 0.10 m/s, P = .009). Although HP players had faster sprint times over 28 m (achieved by a higher PO), high standard deviations show the heterogeneity within the two groups (eg, some LP players were better than HP players). Quantification of asymmetries is important not only for classifiers but also for sports practitioners wishing to improve performance as they could be addressed through training and/or wheelchair configuration.


Subject(s)
Athletic Performance , Disabled Persons , Football , Wheelchairs , Adult , Athletes , Biomechanical Phenomena , Ergometry , Humans , Torque
2.
J Biomech ; 65: 221-225, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29132727

ABSTRACT

Wheelchair mobility performance is an important aspect in most wheelchair court sports, commonly measured with an indoor tracking system or wheelchair bound inertial sensors. Both methods provide key wheelchair mobility performance outcomes regarding speed. In this study, we compared speed profiles of both methods to gain insight into the level of agreement, for recommendations regarding future performance measurement. Data were obtained from 5 male highly trained wheelchair basketball players during match play. Players were equipped simultaneously with a tag on the footplate for the indoor tracking system (∼8 Hz) and inertial sensors on both wheels and frame (199.8 Hz). Being part of a larger study on 3 vs 3 player game formats, data were collected in several matches with varying field sizes, but activity profiles closely resembled regular match play. Both systems provide similar outcomes regarding distance covered and average speed. Due to differences in sampling frequency and sensor location (reference point) on the wheelchair (for speed calculation), minor differences were revealed at low speeds (<2.5 m/s). Since both systems provide complementary features, a hybrid solution as proved feasible in this study, could possibly serve as the new gold standard for mobility performance measurement in wheelchair basketball or wheelchair court sports in general.


Subject(s)
Wheelchairs , Accelerometry/methods , Athletic Performance , Basketball , Exercise , Humans , Male , Young Adult
3.
Med Eng Phys ; 37(4): 392-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25726151

ABSTRACT

The aim of the current investigation was to explore the lateral stiffness of different sports wheelchair wheels available to athletes in 'new' and 'used' conditions and to determine the effect of (a) stiffness, (b) tyre type (clincher vs. tubular) and (c) tyre orientation on the physiological and biomechanical responses to submaximal and maximal effort propulsion specific to wheelchair basketball. Eight able-bodied individuals participated in the laboratory-based testing, which took place on a wheelchair ergometer at two fixed speeds (1.1 and 2.2 m s(-1)). Outcome measures were power output and physiological demand (oxygen uptake and heart rate). Three participants with experience of over-ground sports wheelchair propulsion also performed 2 × 20 m sprints in each wheel configuration. Results revealed that wheels differed significantly in lateral stiffness with the 'new' Spinergy wheel shown to be the stiffest (678.2 ± 102.1 N mm(-1)). However the effects of stiffness on physiological demand were minimal compared to tyre type whereby tubular tyres significantly reduced the rolling resistance and power output in relation to clincher tyres. Therefore tyre type (and subsequently inflation pressure) remains the most important aspect of wheel specification for athletes to consider and monitor when configuring a sports wheelchair.


Subject(s)
Basketball/physiology , Sports for Persons with Disabilities/physiology , Wheelchairs , Adult , Elasticity , Equipment Design , Ergometry , Heart Rate , Humans , Male , Oxygen Consumption , Pressure
4.
Science ; 306(5697): 836-44, 2004 Oct 29.
Article in English | MEDLINE | ID: mdl-15472038

ABSTRACT

Polarization observations of the cosmic microwave background with the Cosmic Background Imager from September 2002 to May 2004 provide a significant detection of the E-mode polarization and reveal an angular power spectrum of polarized emission showing peaks and valleys that are shifted in phase by half a cycle relative to those of the total intensity spectrum. This key agreement between the phase of the observed polarization spectrum and that predicted on the basis of the total intensity spectrum provides support for the standard model of cosmology, in which dark matter and dark energy are the dominant constituents, the geometry is close to flat, and primordial density fluctuations are predominantly adiabatic with a matter power spectrum commensurate with inflationary cosmological models.

5.
J Chromatogr Sci ; 14(1): 40-4, 1976 Jan.
Article in English | MEDLINE | ID: mdl-1245593

ABSTRACT

An automated system for the analysis of fatty acids is described. Samples dissolved in CS2 are automatically injected and separated by temperature programmed gas chromatography. Peak areas and retention times were measured by an electronic integrator, and recorded on punched paper tape. Peaks are identified and amounts calculated by an off-line computer program based on one or more internal standards. The system is designed for use with samples of at least 10 mug. Some of the problems adn limitations are discussed.


Subject(s)
Autoanalysis , Fatty Acids/analysis , Carbon Disulfide , Chromatography, Gas , Microchemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...