Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Basic Res Cardiol ; 118(1): 14, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37020075

ABSTRACT

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used for personalised medicine and preclinical cardiotoxicity testing. Reports on hiPSC-CM commonly describe heterogenous functional readouts and underdeveloped or immature phenotypical properties. Cost-effective, fully defined monolayer culture is approaching mainstream adoption; however, the optimal age at which to utilise hiPSC-CM is unknown. In this study, we identify, track and model the dynamic developmental behaviour of key ionic currents and Ca2+-handling properties in hiPSC-CM over long-term culture (30-80 days). hiPSC-CMs > 50 days post differentiation show significantly larger ICa,L density along with an increased ICa,L-triggered Ca2+-transient. INa and IK1 densities significantly increase in late-stage cells, contributing to increased upstroke velocity and reduced action potential duration, respectively. Importantly, our in silico model of hiPSC-CM electrophysiological age dependence confirmed IK1 as the key ionic determinant of action potential shortening in older cells. We have made this model available through an open source software interface that easily allows users to simulate hiPSC-CM electrophysiology and Ca2+-handling and select the appropriate age range for their parameter of interest. This tool, together with the insights from our comprehensive experimental characterisation, could be useful in future optimisation of the culture-to-characterisation pipeline in the field of hiPSC-CM research.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Aged , Calcium , Action Potentials , Cell Differentiation
3.
Basic Res Cardiol ; 117(1): 5, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35499658

ABSTRACT

Dilated cardiomyopathy (DCM) is a major risk factor for heart failure and is associated with the development of life-threatening cardiac arrhythmias. Using a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model harbouring a mutation in cardiac troponin T (R173W), we aim to examine the cellular basis of arrhythmogenesis in DCM patients with this mutation. iPSC from control (Ctrl) and DCM-TnT-R173W donors from the same family were differentiated into iPSC-CM and analysed through optical action potential (AP) recordings, simultaneous measurement of cytosolic calcium concentration ([Ca2+]i) and membrane currents and separately assayed using field stimulation to detect the threshold for AP- and [Ca2+]i-alternans development. AP duration was unaltered in TnT-R173W iPSC-CM. Nevertheless, TnT-R173W iPSC-CM showed a strikingly low stimulation threshold for AP- and [Ca2+]i-alternans. Myofilaments are known to play a role as intracellular Ca2+ buffers and here we show increased Ca2+ affinity of intracellular buffers in TnT-R173W cells, indicating increased myofilament sensitivity to Ca2+. Similarly, EMD57033, a myofilament Ca2+ sensitiser, replicated the abnormal [Ca2+]i dynamics observed in TnT-R173W samples and lowered the threshold for alternans development. In contrast, application of a Ca2+ desensitiser (blebbistatin) to TnT-R173W iPSC-CM was able to phenotypically rescue Ca2+ dynamics, normalising Ca2+ transient profile and minimising the occurrence of Ca2+ alternans at physiological frequencies. This finding suggests that increased Ca2+ buffering likely plays a major arrhythmogenic role in patients with DCM, specifically in those with mutations in cardiac troponin T. In addition, we propose that modulation of myofilament Ca2+ sensitivity could be an effective anti-arrhythmic target for pharmacological management of this disease.


Subject(s)
Cardiomyopathy, Dilated , Induced Pluripotent Stem Cells , Arrhythmias, Cardiac/genetics , Calcium , Cardiomyopathy, Dilated/genetics , Humans , Myocytes, Cardiac , Troponin T/genetics , Troponin T/pharmacology
4.
Int J Mol Sci ; 22(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062838

ABSTRACT

BACKGROUND: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to ß-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. METHODS: Cellular arrhythmia, ion currents, and Ca2+-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. RESULTS: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in ICaL seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in INaL and Ca2+-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. CONCLUSION: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF.


Subject(s)
Arrhythmias, Cardiac/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Guanine Nucleotide Exchange Factors/genetics , Action Potentials/drug effects , Action Potentials/genetics , Animals , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/pathology , Calcium/metabolism , Cyclic AMP/genetics , Cyclic GMP/genetics , Gene Expression Regulation/genetics , Heart/physiopathology , Humans , Isoproterenol/toxicity , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism
5.
Cardiovasc Res ; 117(7): 1790-1801, 2021 06 16.
Article in English | MEDLINE | ID: mdl-32520995

ABSTRACT

AIMS: Atrial fibrillation (AF) is a commonly occurring arrhythmia after cardiac surgery (postoperative AF, poAF) and is associated with poorer outcomes. Considering that reduced atrial contractile function is a predictor of poAF and that Ca2+ plays an important role in both excitation-contraction coupling and atrial arrhythmogenesis, this study aims to test whether alterations of intracellular Ca2+ handling contribute to impaired atrial contractility and to the arrhythmogenic substrate predisposing patients to poAF. METHODS AND RESULTS: Right atrial appendages were obtained from patients in sinus rhythm undergoing open-heart surgery. Cardiomyocytes were investigated by simultaneous measurement of [Ca2+]i and action potentials (APs, patch-clamp). Patients were followed-up for 6 days to identify those with and without poAF. Speckle-tracking analysis of preoperative echocardiography revealed reduced left atrial contraction strain in poAF patients. At the time of surgery, cellular Ca2+ transients (CaTs) and the sarcoplasmic reticulum (SR) Ca2+ content were smaller in the poAF group. CaT decay was slower in poAF, but the decay of caffeine-induced Ca2+ transients was unaltered, suggesting preserved sodium-calcium exchanger function. In agreement, western blots revealed reduced SERCA2a expression in poAF patients but unaltered phospholamban expression/phosphorylation. Computational modelling indicated that reduced SERCA activity promotes occurrence of CaT and AP alternans. Indeed, alternans of CaT and AP occurred more often and at lower stimulation frequencies in atrial myocytes from poAF patients. Resting membrane potential and AP duration were comparable between both groups at various pacing frequencies (0.25-8 Hz). CONCLUSIONS: Biochemical, functional, and modelling data implicate reduced SERCA-mediated Ca2+ reuptake into the SR as a major contributor to impaired preoperative atrial contractile function and to the pre-existing arrhythmogenic substrate in patients developing poAF.


Subject(s)
Action Potentials , Atrial Appendage/metabolism , Atrial Fibrillation/etiology , Calcium Signaling , Calcium/metabolism , Cardiac Surgical Procedures/adverse effects , Heart Rate , Myocytes, Cardiac/metabolism , Aged , Atrial Appendage/physiopathology , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Calcium-Binding Proteins/metabolism , Case-Control Studies , Female , Humans , Male , Middle Aged , Phosphorylation , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Time Factors
6.
Basic Res Cardiol ; 115(6): 72, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33258071

ABSTRACT

The molecular mechanisms underlying atrial fibrillation (AF), the most common form of arrhythmia, are poorly understood and therefore target-specific treatment options remain an unmet clinical need. Excitation-contraction coupling in cardiac myocytes requires high amounts of adenosine triphosphate (ATP), which is replenished by oxidative phosphorylation in mitochondria. Calcium (Ca2+) is a key regulator of mitochondrial function by stimulating the Krebs cycle, which produces nicotinamide adenine dinucleotide for ATP production at the electron transport chain and nicotinamide adenine dinucleotide phosphate for the elimination of reactive oxygen species (ROS). While it is now well established that mitochondrial dysfunction plays an important role in the pathophysiology of heart failure, this has been less investigated in atrial myocytes in AF. Considering the high prevalence of AF, investigating the role of mitochondria in this disease may guide the path towards new therapeutic targets. In this review, we discuss the importance of mitochondrial Ca2+ handling in regulating ATP production and mitochondrial ROS emission and how alterations, particularly in these aspects of mitochondrial activity, may play a role in AF. In addition to describing research advances, we highlight areas in which further studies are required to elucidate the role of mitochondria in AF.


Subject(s)
Atrial Fibrillation/metabolism , Atrial Function , Heart Atria/metabolism , Heart Rate , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Animals , Atrial Fibrillation/physiopathology , Calcium Signaling , Energy Metabolism , Heart Atria/physiopathology , Humans , Oxidative Stress , Reactive Oxygen Species/metabolism
7.
J Cardiovasc Pharmacol Ther ; 22(1): 40-50, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27130298

ABSTRACT

The purpose of this article is to review the basis of arrhythmogenesis, the functional and clinical role of the late Na current, and its therapeutic inhibition. Under pathological conditions such as ischemia and heart failure this current is abnormally enhanced and influences cellular electrophysiology as a proarrhythmic substrate in myocardial pathology. Ranolazine the only approved late Na current blocker has been demonstrated to produce antiarrhythmic effects in the atria and the ventricle. We summarize recent experimental and clinical studies of ranolazine and other experimental late Na current blockers and discuss the significance of the available data.

8.
Circ Res ; 120(1): 120-132, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-27799254

ABSTRACT

RATIONALE: Phosphodiesterase 2 is a dual substrate esterase, which has the unique property to be stimulated by cGMP, but primarily hydrolyzes cAMP. Myocardial phosphodiesterase 2 is upregulated in human heart failure, but its role in the heart is unknown. OBJECTIVE: To explore the role of phosphodiesterase 2 in cardiac function, propensity to arrhythmia, and myocardial infarction. METHODS AND RESULTS: Pharmacological inhibition of phosphodiesterase 2 (BAY 60-7550, BAY) led to a significant positive chronotropic effect on top of maximal ß-adrenoceptor activation in healthy mice. Under pathological conditions induced by chronic catecholamine infusions, BAY reversed both the attenuated ß-adrenoceptor-mediated inotropy and chronotropy. Conversely, ECG telemetry in heart-specific phosphodiesterase 2-transgenic (TG) mice showed a marked reduction in resting and in maximal heart rate, whereas cardiac output was completely preserved because of greater cardiac contraction. This well-tolerated phenotype persisted in elderly TG with no indications of cardiac pathology or premature death. During arrhythmia provocation induced by catecholamine injections, TG animals were resistant to triggered ventricular arrhythmias. Accordingly, Ca2+-spark analysis in isolated TG cardiomyocytes revealed remarkably reduced Ca2+ leakage and lower basal phosphorylation levels of Ca2+-cycling proteins including ryanodine receptor type 2. Moreover, TG demonstrated improved cardiac function after myocardial infarction. CONCLUSIONS: Endogenous phosphodiesterase 2 contributes to heart rate regulation. Greater phosphodiesterase 2 abundance protects against arrhythmias and improves contraction force after severe ischemic insult. Activating myocardial phosphodiesterase 2 may, thus, represent a novel intracellular antiadrenergic therapeutic strategy protecting the heart from arrhythmia and contractile dysfunction.


Subject(s)
Arrhythmias, Cardiac/metabolism , Cardiotonic Agents/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/biosynthesis , Isoproterenol/toxicity , Myocardial Contraction/physiology , Myocardial Infarction/metabolism , Animals , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/prevention & control , Catecholamines/toxicity , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Dogs , Female , Imidazoles/pharmacology , Male , Mice , Mice, Transgenic , Myocardial Contraction/drug effects , Myocardial Infarction/physiopathology , Triazines/pharmacology
9.
J Mol Cell Cardiol ; 94: 95-106, 2016 05.
Article in English | MEDLINE | ID: mdl-27056421

ABSTRACT

INTRODUCTION: Pharmacological rhythm control of atrial fibrillation (AF) in patients with structural heart disease is limited. Ranolazine in combination with low dose dronedarone remarkably reduced AF-burden in the phase II HARMONY trial. We thus aimed to investigate the possible mechanisms underlying these results. METHODS AND RESULTS: Patch clamp experiments revealed that ranolazine (5µM), low-dose dronedarone (0.3µM), and the combination significantly prolonged action potential duration (APD90) in atrial myocytes from patients in sinus rhythm (prolongation by 23.5±0.1%, 31.7±0.1% and 25.6±0.1% respectively). Most importantly, in atrial myocytes from patients with AF ranolazine alone, but more the combination with dronedarone, also prolonged the typically abbreviated APD90 (prolongation by 21.6±0.1% and 31.9±0.1% respectively). It was clearly observed that neither ranolazine, dronedarone nor the combination significantly changed the APD or contractility and twitch force in ventricular myocytes or trabeculae from patients with heart failure (HF). Interestingly ranolazine, and more so the combination, but not dronedarone alone, caused hyperpolarization of the resting membrane potential in cardiomyocytes from AF. As measured by confocal microscopy (Fluo-3), ranolazine, dronedarone and the combination significantly suppressed diastolic sarcoplasmic reticulum (SR) Ca(2+) leak in myocytes from sinus rhythm (reduction by ranolazine: 89.0±30.7%, dronedarone: 75.6±27.4% and combination: 78.0±27.2%), in myocytes from AF (reduction by ranolazine: 67.6±33.7%, dronedarone: 86.5±31.7% and combination: 81.0±33.3%), as well as in myocytes from HF (reduction by ranolazine: 64.8±26.5% and dronedarone: 65.9±29.3%). CONCLUSIONS: Electrophysiological measurements during exposure to ranolazine alone or in combination with low-dose dronedarone showed APD prolongation, cellular hyperpolarization and reduced SR Ca(2+) leak in human atrial myocytes. The combined inhibitory effects on various currents, in particular Na(+) and K(+) currents, may explain the anti-AF effects observed in the HARMONY trial. Therefore, the combination of ranolazine and dronedarone, but also ranolazine alone, may be promising new treatment options for AF, especially in patients with HF, and merit further clinical investigation.


Subject(s)
Amiodarone/analogs & derivatives , Atrial Function/drug effects , Heart Atria/drug effects , Heart Ventricles/drug effects , Ranolazine/pharmacology , Ventricular Function/drug effects , Aged , Amiodarone/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Cardiovascular Agents/pharmacology , Dronedarone , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Sarcomeres/drug effects , Sarcomeres/metabolism
10.
Cardiovasc Res ; 107(1): 184-96, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25990311

ABSTRACT

AIMS: Enhanced cardiac late Na current (late INa) and increased sarcoplasmic reticulum (SR)-Ca(2+)-leak are both highly arrhythmogenic. This study seeks to identify signalling pathways interconnecting late INa and SR-Ca(2+)-leak in atrial cardiomyocytes (CMs). METHODS AND RESULTS: In murine atrial CMs, SR-Ca(2+)-leak was increased by the late INa enhancer Anemonia sulcata toxin II (ATX-II). An inhibition of Ca(2+)/calmodulin-dependent protein kinase II (Autocamide-2-related inhibitory peptide), protein kinase A (H89), or late INa (Ranolazine or Tetrodotoxin) all prevented ATX-II-dependent SR-Ca(2+)-leak. The SR-Ca(2+)-leak induction by ATX-II was not detected when either the Na(+)/Ca(2+) exchanger was inhibited (KBR) or in CaMKIIδc-knockout mice. FRET measurements revealed increased cAMP levels upon ATX-II stimulation, which could be prevented by inhibition of adenylyl cyclases (ACs) 5 and 6 (NKY 80) but not by inhibition of phosphodiesterases (IBMX), suggesting PKA activation via an AC-dependent increase of cAMP levels. Western blots showed late INa-dependent hyperphosphorylation of CaMKII as well as PKA target sites at ryanodine receptor type-2 (-S2814 and -S2808) and phospholamban (-Thr17, -S16). Enhancement of late INa did not alter Ca(2+)-transient amplitude or SR-Ca(2+)-load. However, upon late INa activation and simultaneous CaMKII inhibition, Ca(2+)-transient amplitude and SR-Ca(2+)-load were increased, whereas PKA inhibition reduced Ca(2+)-transient amplitude and load and additionally slowed Ca(2+) elimination. In atrial CMs from patients with atrial fibrillation, inhibition of late INa, CaMKII, or PKA reduced the SR-Ca(2+)-leak. CONCLUSION: Late INa exerts distinct effects on Ca(2+) homeostasis in atrial myocardium through activation of CaMKII and PKA. Inhibition of late INa represents a potential approach to attenuate CaMKII activation and decreases SR-Ca(2+)-leak in atrial rhythm disorders. The interconnection with the cAMP/PKA system further increases the antiarrhythmic potential of late INa inhibition.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/physiology , Diastole/physiology , Heart Atria/metabolism , Sarcoplasmic Reticulum/metabolism , Sodium Channels/physiology , Animals , Atrial Fibrillation/etiology , Cyclic AMP/analysis , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Enzyme Activation , Humans , Mice , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...