Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 292(4): C1370-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17135297

ABSTRACT

Increased levels of O-linked attachment of N-acetylglucosamine (O-GlcNAc) on nucleocytoplasmic proteins are implicated in the development of diabetic cardiomyopathy and are regulated by O-GlcNAc transferase (OGT) expression and its substrate UDP-GlcNAc. Therefore, the goal of this study was to determine whether the development of diabetes in the Zucker diabetic fatty (ZDF) rat, a model of Type 2 diabetes, results in defects in cardiomyocyte mechanical function and, if so, whether this is associated with increased levels of O-GlcNAc and increased OGT expression. Six-week-old ZDF rats were hyperinsulinemic but normoglycemic, and there were no differences in cardiomyocyte mechanical function, UDP-GlcNAc, O-GlcNAc, or OGT compared with age-matched lean control rats. Cardiomyocytes isolated from 22-wk-old hyperglycemic ZDF rats exhibited significantly impaired relaxation, compared with both age-matched lean control and 6-wk-old ZDF groups. There was also a significant increase in O-GlcNAc levels in high-molecular-mass proteins in the 22-wk-old ZDF group compared with age-matched lean control and 6-wk-old ZDF groups; this was associated with increased UDP-GlcNAc levels but not increased OGT expression. Surprisingly, there was a significant decrease in overall O-GlcNAc levels between 6 and 22 wk of age in lean, ZDF, and Sprague-Dawley rats that was associated with decreased OGT expression. These results support the notion that an increase in O-GlcNAc on specific proteins may contribute to impaired cardiomyocyte function in diabetes. However, this study also indicates that in the heart the level of O-GlcNAc on proteins appears to be differentially regulated by age and diabetes.


Subject(s)
Acetylglucosamine/biosynthesis , Aging , Diabetes Mellitus, Type 2/metabolism , Myocardium/metabolism , N-Acetylglucosaminyltransferases/biosynthesis , Animals , Biomechanical Phenomena , Calcium/metabolism , Calcium/physiology , Diabetes Mellitus, Type 2/physiopathology , Glycosylation , Hyperglycemia/metabolism , Hyperglycemia/physiopathology , In Vitro Techniques , Male , Myocardial Contraction , Myocytes, Cardiac/physiology , Rats , Rats, Sprague-Dawley , Rats, Zucker
2.
J Mol Cell Cardiol ; 39(2): 297-307, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15878173

ABSTRACT

Ventricular dysfunction in type 2 diabetic patients is becoming apparent early after diagnosis of diabetes, but the cellular mechanisms contributing to this dysfunction are not well established. Our group has recently identified cardiomyocyte dysfunction in diet-induced insulin resistant rats that have not developed type 2 diabetes. The present investigation was designed to determine cellular mechanisms contributing to slowed cardiomyocyte relaxation in sucrose (SU)-fed rats. SU-feeding was used to induce whole-body insulin resistance. After 9-12 weeks on diet, isolated ventricular myocyte shortening/relengthening were slower in SU-fed adult male Wistar rats (42-63%) compared to starch (ST)-fed controls. Cytosolic Ca2+ removal attributable to Na+/Ca2+ exchange (NCX) and to sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) was evaluated with fluo-3/AM. Caffeine-releasable Ca2+ and cytosolic Ca2+ clearing through NCX were normal, whereas Ca2+ uptake by SERCA was significantly slower in SU myocytes (330+/-29 ms) compared to ST cells (253+/-16 ms). Protein levels for SERCA, NCX and phospholamban were not affected by SU-feeding. Manipulating intracellular Ca2+ with various positive inotropic interventions (e.g. post-rest potentiation, isoproterenol) and changes in stimulus frequency demonstrated that mechanical properties can be improved in subsets of myocytes. Thus, we conclude that impaired SERCA activity (with normal protein content) contributes to cardiomyocyte dysfunction in insulin resistant animals, whereas NCX function and expression are normal. These results suggest that subtle changes in Ca2+ regulation which occur prior to overt ventricular dysfunction/failure, may be common to early stages of a number of disorders involving insulin resistance (e.g. diabetes, obesity, syndrome X and hypertension).


Subject(s)
Calcium-Transporting ATPases/metabolism , Insulin Resistance/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Caffeine/pharmacology , Calcium Signaling/drug effects , Ion Exchange , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Rats , Rats, Wistar , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Starch/pharmacology , Sucrose/pharmacology
3.
Am J Physiol Endocrinol Metab ; 286(5): E718-24, 2004 May.
Article in English | MEDLINE | ID: mdl-15102617

ABSTRACT

We recently identified cardiomyocyte dysfunction in the early stage of type 2 diabetes (i.e., diet-induced insulin resistance). The present investigation was designed to determine whether a variety of clinically relevant interventions are sufficient to prevent and reverse cardiomyocyte dysfunction in sucrose (SU)-fed insulin-resistant rats. Subsets of animals were allowed to exercise (free access to wheel attached to cage) or were treated with bezafibrate in drinking water to determine whether these interventions would prevent the adverse effects of SU feeding on cardiomyocyte function. After 6-8 wk on diet and treatment, animals were surgically prepared to assess whole body insulin sensitivity (intravenous glucose tolerance test), and isolated ventricular myocyte mechanics were evaluated (video edge recording). SU feeding produced hyperinsulinemia and hypertriglyceridemia, with euglycemia, and induced characteristic whole body insulin resistance. Both exercise and bezafibrate treatment prevented these metabolic abnormalities. Ventricular myocyte shortening and relengthening were slower in SU-fed rats (42-63%) compared with starch (ST)-fed controls, and exercise or bezafibrate completely prevented cardiomyocyte dysfunction in SU-fed rats. In separate cohorts of animals, after 5 wk of SU feeding, animals were either switched back to an ST diet or given menhaden oil for an additional 7-9 wk to determine whether the cardiomyocyte dysfunction was reversible. Both interventions have previously been shown to have favorable metabolic effects, and both improved myocyte mechanics, but only the ST diet reversed all indications of cardiomyocyte dysfunction induced by SU feeding. Thus phenotypic changes in cardiomyocyte mechanics associated with early stages of type 2 diabetes were found to be both preventable and reversible with clinically relevant treatments, suggesting that the cellular processes contributing to this dysfunction are modifiable.


Subject(s)
Bezafibrate/pharmacology , Diabetes Mellitus, Type 2/prevention & control , Heart Diseases/prevention & control , Hypolipidemic Agents/pharmacology , Insulin Resistance/physiology , Myocytes, Cardiac/metabolism , Physical Conditioning, Animal , Animals , Diabetes Mellitus, Type 2/chemically induced , Dietary Sucrose , Heart Diseases/etiology , Heart Diseases/physiopathology , Hyperinsulinism/metabolism , Hyperinsulinism/prevention & control , Male , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Myocytes, Cardiac/drug effects , Physical Exertion , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...