Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 6190, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261416

ABSTRACT

Plant-parasitic nematodes are a major threat to crop production in all agricultural systems. The scarcity of classical resistance genes highlights a pressing need to find new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality phased genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major parasitism stages. Analysis of the hologenome of the plant-nematode infection site identified metabolic pathways that were incomplete in the parasite but complemented by the host. Using a combination of bioinformatic, genetic, and biochemical approaches, we show that a highly atypical completion of vitamin B5 biosynthesis by the parasitic animal, putatively enabled by a horizontal gene transfer from a bacterium, is required for full pathogenicity. Knockout of either plant-encoded or now nematode-encoded steps in the pathway significantly reduces parasitic success. Our experiments establish a reference for cyst nematodes, further our understanding of the evolution of plant-parasitism by nematodes, and show that congruent differential expression of metabolic pathways in the infection hologenome represents a new way to find nematode susceptibility genes. The approach identifies genome-editing-amenable targets for future development of nematode-resistant crops.


Subject(s)
Cysts , Parasites , Tylenchida , Animals , Pantothenic Acid , Transcriptome
2.
Microbiol Resour Announc ; 11(10): e0074522, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36154189

ABSTRACT

We report the sequence of an assembled genome of Barley yellow dwarf virus-PAV (BYDV-PAV) from Turkey. This 5,672 nucleotide RNA encodes seven known open reading frames and a possible eighth. This genome from wheat is closely related to BYDV-PAVs in Pakistan, Brazil, and Australia, including one sequenced 34 years ago.

3.
Mol Ecol Resour ; 21(7): 2407-2422, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34036752

ABSTRACT

The soybean cyst nematode (Heterodera glycines) is a sedentary plant parasite that exceeds billion USD annually in yield losses. This problem is exacerbated by H. glycines populations overcoming the limited sources of natural resistance in soybean and by the lack of effective and safe alternative treatments. Although there are genetic determinants that render soybeans resistant to nematode genotypes, resistant soybeans are increasingly ineffective because their multiyear usage has selected for virulent H. glycines populations. Successful H. glycines infection relies on the comprehensive re-engineering of soybean root cells into a syncytium, as well as the long-term suppression of host defences to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms that control genomic effector acquisition, diversification, and selection are important insights needed for the development of essential novel control strategies. As a foundation to obtain this understanding, we created a nine-scaffold, 158 Mb pseudomolecule assembly of the H. glycines genome using PacBio, Chicago, and Hi-C sequencing. A Mikado consensus gene prediction produced an annotation of 22,465 genes using short- and long-read expression data. To evaluate assembly and annotation quality, we cross-examined synteny among H. glycines assemblies, and compared BUSCO across related species. To describe the predicted proteins involved in H. glycines' secretory pathway, we contrasted expression between preparasitic and parasitic stages with functional gene information. Here, we present the results from our assembly and annotation of the H. glycines genome and contribute this resource to the scientific community.


Subject(s)
Cysts , Tylenchoidea , Animals , Chromosomes , Genome , Glycine max/genetics , Tylenchoidea/genetics
4.
PLoS One ; 16(4): e0249899, 2021.
Article in English | MEDLINE | ID: mdl-33909645

ABSTRACT

Rocky Mountain elk (Cervus canadensis) populations have significant economic implications to the cattle industry, as they are a major reservoir for Brucella abortus in the Greater Yellowstone area. Vaccination attempts against intracellular bacterial diseases in elk populations have not been successful due to a negligible adaptive cellular immune response. A lack of genomic resources has impeded attempts to better understand why vaccination does not induce protective immunity. To overcome this limitation, PacBio, Illumina, and Hi-C sequencing with a total of 686-fold coverage was used to assemble the elk genome into 35 pseudomolecules. A robust gene annotation was generated resulting in 18,013 gene models and 33,422 mRNAs. The accuracy of the assembly was assessed using synteny to the red deer and cattle genomes identifying several chromosomal rearrangements, fusions and fissions. Because this genome assembly and annotation provide a foundation for genome-enabled exploration of Cervus species, we demonstrate its utility by exploring the conservation of immune system-related genes. We conclude by comparing cattle immune system-related genes to the elk genome, revealing eight putative gene losses in elk.


Subject(s)
Deer/genetics , Genome , Animals , Cattle , Gene Fusion , Gene Rearrangement , Immunity/genetics , Pseudogenes/genetics , RNA, Messenger/metabolism
5.
Mol Plant Microbe Interact ; 34(9): 1084-1087, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33900122

ABSTRACT

The soybean cyst nematode Heterodera glycines is the most economically devastating pathogen of soybean in the United States and threatens to become even more damaging through the selection of virulent nematode populations in the field that can overcome natural resistance mechanisms in soybean cultivars. This pathogen, therefore, demands intense transcriptomic/genomic research inquiries into the biology of its parasitic mechanisms. H. glycines delivers effector proteins that are produced in specialized gland cells into the soybean root to enable infection. The study of effector proteins, thus, is particularly promising when exploring novel management options against this pathogen. Here, we announce the availability of a gland cell-specific RNA-seq resource. These data represent an expression snapshot of gland cell activity during early soybean infection of a virulent and an avirulent H. glycines population, providing a unique and highly valuable resource for scientists examining effector biology and nematode virulence.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Cysts , Tylenchoidea , Animals , Plant Diseases , RNA-Seq , Glycine max/genetics , Tylenchoidea/genetics
6.
Microorganisms ; 8(11)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33120988

ABSTRACT

Foodborne pathogens are a public health threat globally. Shiga toxin-producing Escherichia coli (STEC), particularly O26, O111, and O157 STEC, are often associated with foodborne illness in humans. To create effective preharvest interventions, it is critical to understand which factors STEC strains use to colonize the gastrointestinal tract of cattle, which serves as the reservoir for these pathogens. Several colonization factors are known, but little is understood about initial STEC colonization factors. Our objective was to identify these factors via contrasting gene expression between nonpathogenic E. coli and STEC. Colonic explants were inoculated with nonpathogenic E. coli strain MG1655 or STEC strains (O26, O111, or O157), bacterial colonization levels were determined, and RNA was isolated and sequenced. STEC strains adhered to colonic explants at numerically but not significantly higher levels compared to MG1655. After incubation with colonic explants, flagellin (fliC) was upregulated (log2 fold-change = 4.0, p < 0.0001) in O157 STEC, and collectively, Lon protease (lon) was upregulated (log2 fold-change = 3.6, p = 0.0009) in STEC strains compared to MG1655. These results demonstrate that H7 flagellum and Lon protease may play roles in early colonization and could be potential targets to reduce colonization in cattle.

7.
Front Plant Sci ; 10: 1541, 2019.
Article in English | MEDLINE | ID: mdl-31827481

ABSTRACT

One of the extraordinary aspects of plant genome evolution is variation in chromosome number, particularly that among closely related species. This is exemplified by the cotton genus (Gossypium) and its relatives, where most species and genera have a base chromosome number of 13. The two exceptions are sister genera that have n = 12 (the Hawaiian Kokia and the East African and Madagascan Gossypioides). We generated a high-quality genome sequence of Gossypioides kirkii (n = 12) using PacBio, Bionano, and Hi-C technologies, and compared this assembly to genome sequences of Kokia (n = 12) and Gossypium diploids (n = 13). Previous analysis demonstrated that the directionality of their reduced chromosome number was through large structural rearrangements. A series of structural rearrangements were identified comparing the de novo G. kirkii genome sequence to genome sequences of Gossypium, including chromosome fusions and inversions. Genome comparison between G. kirkii and Gossypium suggests that multiple steps are required to generate the extant structural differences.

8.
BMC Bioinformatics ; 20(1): 436, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31438850

ABSTRACT

BACKGROUND: Creating a scalable computational infrastructure to analyze the wealth of information contained in data repositories is difficult due to significant barriers in organizing, extracting and analyzing relevant data. Shared data science infrastructures like Boag is needed to efficiently process and parse data contained in large data repositories. The main features of Boag are inspired from existing languages for data intensive computing and can easily integrate data from biological data repositories. RESULTS: As a proof of concept, Boa for genomics, Boag, has been implemented to analyze RefSeq's 153,848 annotation (GFF) and assembly (FASTA) file metadata. Boag provides a massive improvement from existing solutions like Python and MongoDB, by utilizing a domain-specific language that uses Hadoop infrastructure for a smaller storage footprint that scales well and requires fewer lines of code. We execute scripts through Boag to answer questions about the genomes in RefSeq. We identify the largest and smallest genomes deposited, explore exon frequencies for assemblies after 2016, identify the most commonly used bacterial genome assembly program, and address how animal genome assemblies have improved since 2016. Boag databases provide a significant reduction in required storage of the raw data and a significant speed up in its ability to query large datasets due to automated parallelization and distribution of Hadoop infrastructure during computations. CONCLUSIONS: In order to keep pace with our ability to produce biological data, innovative methods are required. The Shared Data Science Infrastructure, Boag, provides researchers a greater access to researchers to efficiently explore data in new ways. We demonstrate the potential of a the domain specific language Boag using the RefSeq database to explore how deposited genome assemblies and annotations are changing over time. This is a small example of how Boag could be used with large biological datasets.


Subject(s)
Data Science , Genomics , Information Dissemination , Animals , Databases, Factual , Databases, Genetic , Exons/genetics , Genome , Sequence Analysis, DNA , Software
9.
Sci Rep ; 9(1): 1356, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718603

ABSTRACT

Spliced leader trans-splicing (SLTS) plays a part in the maturation of pre-mRNAs in select species across multiple phyla but is particularly prevalent in Nematoda. The role of spliced leaders (SL) within the cell is unclear and an accurate assessment of SL occurrence within an organism is possible only after extensive sequencing data are available, which is not currently the case for many nematode species. SL discovery is further complicated by an absence of SL sequences from high-throughput sequencing results due to incomplete sequencing of the 5'-ends of transcripts during RNA-seq library preparation, known as 5'-bias. Existing datasets and novel methodology were used to identify both conserved SLs and unique hypervariable SLs within Heterodera glycines, the soybean cyst nematode. In H. glycines, twenty-one distinct SL sequences were found on 2,532 unique H. glycines transcripts. The SL sequences identified on the H. glycines transcripts demonstrated a high level of promiscuity, meaning that some transcripts produced as many as nine different individual SL-transcript combinations. Most uniquely, transcriptome analysis revealed that H. glycines is the first nematode to demonstrate a higher SL trans-splicing rate using a species-specific SL over well-conserved Caenorhabditis elegans SL-like sequences.


Subject(s)
Caenorhabditis elegans/genetics , Nematoda/genetics , RNA Splicing/genetics , RNA, Spliced Leader/genetics , Animals , Base Sequence , Gene Dosage , Gene Ontology , Genome , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Spliced Leader/chemistry , Species Specificity , Trans-Splicing/genetics , Transcriptome/genetics
10.
Genome Biol Evol ; 11(2): 431-438, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30657886

ABSTRACT

Abalone are one of the few marine taxa where aquaculture production dominates the global market as a result of increasing demand and declining natural stocks from overexploitation and disease. To better understand abalone biology, aid in conservation efforts for endangered abalone species, and gain insight into sustainable aquaculture, we created a draft genome of the red abalone (Haliotis rufescens). The approach to this genome draft included initial assembly using raw Illumina and PacBio sequencing data with MaSuRCA, before scaffolding using sequencing data generated from Chicago library preparations with HiRise2. This assembly approach resulted in 8,371 scaffolds and total length of 1.498 Gb; the N50 was 1.895 Mb, and the longest scaffold was 13.2 Mb. Gene models were predicted, using MAKER2, from RNA-Seq data and all related expressed sequence tags and proteins from NCBI; this resulted in 57,785 genes with an average length of 8,255 bp. In addition, single nucleotide polymorphisms were called on Illumina short-sequencing reads from five other eastern Pacific abalone species: the green (H. fulgens), pink (H. corrugata), pinto (H. kamtschatkana), black (H. cracherodii), and white (H. sorenseni) abalone. Phylogenetic relationships largely follow patterns detected by previous studies based on 1,784,991 high-quality single nucleotide polymorphisms. Among the six abalone species examined, the endangered white abalone appears to harbor the lowest levels of heterozygosity. This draft genome assembly and the sequencing data provide a foundation for genome-enabled aquaculture improvement for red abalone, and for genome-guided conservation efforts for the other five species and, in particular, for the endangered white and black abalone.


Subject(s)
Gastropoda/genetics , Genome , Animals , Molecular Sequence Annotation , North America , Pacific Ocean , Phylogeny
11.
Plant J ; 88(6): 992-1005, 2016 12.
Article in English | MEDLINE | ID: mdl-27539015

ABSTRACT

Centromeric chromatin in most eukaryotes is composed of highly repetitive centromeric retrotransposons and satellite repeats that are highly variable even among closely related species. The evolutionary mechanisms that underlie the rapid evolution of centromeric repeats remain unknown. To obtain insight into the evolution of centromeric repeats following polyploidy, we studied a model diploid progenitor (Gossypium raimondii, D-genome) of the allopolyploid (AD-genome) cottons, G. hirsutum and G. barbadense. Sequence analysis of chromatin-immunoprecipitated DNA showed that the G. raimondii centromeric repeats originated from retrotransposon-related sequences. Comparative analysis showed that nine of the 10 analyzed centromeric repeats were absent from the centromeres in the A-genome and related diploid species (B-, F- and G-genomes), indicating that they colonized the centromeres of D-genome lineage after the divergence of the A- and D- ancestral species or that they were ancestrally retained prior to the origin of Gossypium. Notably, six of the nine repeats were present in both the A- and D-subgenomes in tetraploid G. hirsutum, and increased in abundance in both subgenomes. This finding suggests that centromeric repeats may spread and proliferate between genomes subsequent to polyploidization. Two repeats, Gr334 and Gr359 occurred in both the centromeres and nucleolar organizer regions (NORs) in D- and AD-genome species, yet localized to just the NORs in A-, B-, F-, and G-genome species. Contained within is a story of an established centromeric repeat that is eliminated and allopolyploidization provides an opportunity for reinvasion and reestablishment, which broadens our evolutionary understanding behind the cycles of centromeric repeat establishment and targeting.


Subject(s)
Centromere/metabolism , Gossypium/genetics , Gossypium/metabolism , Retroelements/genetics , Centromere/genetics , Evolution, Molecular , Genome, Plant/genetics , Polyploidy
12.
Plant Genome ; 8(2): eplantgenome2014.11.0088, 2015 Jul.
Article in English | MEDLINE | ID: mdl-33228305

ABSTRACT

Stabilization of transposable element (TE) copy number involves the biosynthesis of short silencing RNAs (siRNAs) and further initialization of siRNA-mediated TE silencing. To gain insight into the relationship between the biosynthesis of siRNAs and their source TEs, we examined the co-evolutionary dynamics and expression of these two entities by characterizing the siRNA distribution across the genome of Gossypium raimondii Ulbr. We identified an unusual region at the 3' end of chromosome 1 with significantly enriched siRNA coverage. Analysis of the correlation pattern between uniquely mapped siRNAs and those mapping to multiple regions implicated active biogenesis of siRNAs from these potential young TEs. Furthermore, divergence estimates of TEs within this region confirmed that the majority of TEs are young. Active transcription of the source TEs and their positive correlation with expressed siRNAs indicates that sufficient expression of TEs may be necessary to generate siRNAs and maintain the silenced state of recently transposed TEs.

13.
BMC Plant Biol ; 14: 383, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25547313

ABSTRACT

BACKGROUND: Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence for diversifying selection in the various domains of the CenH3 gene. In addition, we compare expression profiles and alternative splicing patterns for CenH3 in representatives of each genus. RESULTS: All three genera retain both duplicated CenH3 copies, while Brassica and Gossypium exhibit pronounced homoeologous expression level bias. Comparisons among genera reveal shared and unique aspects of CenH3 evolution, variable levels of diversifying selection in different CenH3 domains, and that alternative splicing contributes significantly to CenH3 diversity. CONCLUSIONS: Since the N terminus is subject to diversifying selection but the DNA binding domains do not appear to be, rapidly evolving centromere sequences are unlikely to be the primary driver of CenH3 sequence diversification. At present, the functional explanation for the diversity generated by both conventional protein evolution in the N terminal domain, as well as alternative splicing, remains unexplained.


Subject(s)
Brassica/genetics , Evolution, Molecular , Gossypium/genetics , Histones/genetics , Oryza/genetics , Plant Proteins/genetics , Brassica/metabolism , Diploidy , Gossypium/metabolism , Histones/metabolism , Molecular Sequence Data , Oryza/metabolism , Phylogeny , Plant Proteins/metabolism , Polymerase Chain Reaction , Polyploidy , Sequence Analysis, DNA
14.
Chromosoma ; 122(3): 221-32, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23519820

ABSTRACT

Engineered minichromosomes provide efficient platforms for stacking transgenes in crop plants. Methods for modifying these chromosomes in vivo are essential for the development of customizable systems for the removal of selection genes or other sequences and for the addition of new genes. Previous studies have demonstrated that Cre, a site-specific recombinase, could be used to modify lox sites on transgenes on maize minichromosomes; however, these studies demonstrated somatic recombination only, and modified minichromosomes could not be recovered. We describe the recovery of an engineered chromosome composed of little more than a centromere plus transgene that was derived by telomere-mediated truncation. We used the fiber fluorescence in situ hybridization technique and detected a transgene on the minichromosome inserted among stretches of CentC centromere repeats, and this insertion was large enough to suggest a tandem insertion. By crossing the minichromosome to a plant expressing Cre-recombinase, the Bar selection gene was removed, leaving behind a single loxP site. This study demonstrates that engineered chromosomes can be modified in vivo using site-specific recombinases, a demonstration essential to the development of amendable chromosome platforms in plants.


Subject(s)
Chromosomes, Plant/genetics , Plants, Genetically Modified/genetics , Zea mays/genetics , Chromosomes, Plant/metabolism , Genetic Engineering/methods , In Situ Hybridization, Fluorescence , Integrases/genetics , Integrases/metabolism , Plants, Genetically Modified/metabolism , Zea mays/metabolism
15.
Genetics ; 193(1): 77-84, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23114381

ABSTRACT

During an accumulation regime of a small telomere-truncated B chromosome, a derivative with large variations in size and multiple punctate centromere loci exhibiting amplified copy numbers was discovered. Multiple centromere satellite loci or transgene signals were documented in amplified chromosomes, suggesting over-replication. Immunolocalization studies revealed multiple foci of biochemical markers characteristic of active centromeres such as CENP-C and phosphorylation of histones H3S10 and H2AThr133. The amplified chromosomes exhibit an absence of chromosome disjunction in meiosis I and an infrequent chromosome disjunction in meiosis II. Despite their unusual structure and behavior these chromosomes were observed in the lineage for seven generations during the course of this study. While severely truncated relative to a normal B chromosome, the progenitor minichromosome is estimated to be at least several megabases in size. Given that the centromere and transgene signals at opposite ends of the chromosome generally match in copy number, the replication control is apparently lost over several megabases.


Subject(s)
Chromosomes, Plant , DNA Replication , Zea mays/genetics , Histones/metabolism , Meiosis , Mitosis , Sister Chromatid Exchange , Telomere/genetics , Telomere/metabolism , Zea mays/metabolism
16.
Chromosome Res ; 20(4): 395-402, 2012 May.
Article in English | MEDLINE | ID: mdl-22552914

ABSTRACT

In this study, four distinct minichromosomes derived from the maize B chromosome, were increased in copy number using the B chromosome's accumulation mechanism, namely nondisjunction at the second pollen mitosis and preferential fertilization of the egg. These minichromosomes provide the unique opportunity to examine the behavior of many copies of a single chromosome in an otherwise diploid background. While multiple copies were associated in multivalent configurations, they often dissociated into univalents or bivalents prior to metaphase I. The largest mini's behavior closely resembled the progenitor B chromosome, but all smaller chromosomes showed failure of sister chromatid cohesion. In addition to the meiotic behavior, we observed many anomalies of univalent behavior and possible heterochromatic fusions of B repeat associated heterochromatin.


Subject(s)
Chromosomes, Plant , Meiosis , Zea mays/genetics , In Situ Hybridization, Fluorescence , Metaphase/genetics , Prophase/genetics
17.
Annu Rev Plant Biol ; 63: 307-30, 2012.
Article in English | MEDLINE | ID: mdl-22136564

ABSTRACT

Synthetic chromosomes provide the means to stack transgenes independently of the remainder of the genome. Combining them with haploid breeding could provide the means to transfer many transgenes more easily among varieties of the same species. The epigenetic nature of centromere formation complicates the production of synthetic chromosomes. However, telomere-mediated truncation coupled with the introduction of site-specific recombination cassettes has been used to produce minichromosomes consisting of little more than a centromere. Methods that have been developed to modify genes in vivo could be applied to minichromosomes to improve their utility and to continue to increase their length and genic content. Synthetic chromosomes establish the means to add or subtract multiple transgenes, multigene complexes, or whole biochemical pathways to plants to change their properties for agricultural applications or to use plants as factories for the production of foreign proteins or metabolites.


Subject(s)
Centromere/genetics , Chromosomes, Artificial/genetics , Chromosomes, Plant/genetics , Plants, Genetically Modified/genetics , Crops, Agricultural/genetics , Ecology , Epigenesis, Genetic , Genetic Engineering/methods , Genetic Variation , Haploidy , Telomere/genetics , Transgenes
18.
Genome ; 54(3): 184-95, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21423281

ABSTRACT

Maize-engineered minichromosomes are easily recovered from telomere-truncated B chromosomes but are rarely recovered from A chromosomes. B chromosomes lack known genes, and their truncation products are tolerated and transmitted during meiosis. In contrast, deficiency gametes resulting from truncated A chromosomes prevent their transmission. We report here a de novo compensating translocation that permitted recovery of a large truncation of chromosome 1 in maize. The truncation (trunc-1) and translocation with chromosome 6 (super-6) occurred during telomere-mediated truncation experiments and were characterized using single-gene fluorescent in situ hybridization (FISH) probes. The truncation contained a transgene signal near the end of the broken chromosome and transmitted together with the compensating translocation as a heterozygote to approximately 41%-55% of progeny. Transmission as an addition chromosome occurred in ~15% of progeny. Neither chromosome transmitted through pollen. Transgene expression (Bar) cosegregated with trunc-1 transcriptionally and phenotypically. Meiosis in T1 plants revealed eight bivalents and one tetravalent chain composed of chromosome 1, trunc-1, chromosome 6, and super-6 in diplotene and diakinesis. Our data suggest that de novo compensating translocations allow recovery of truncated A chromosomes by compensating deficiency in female gametes and by affecting chromosome pairing and segregation. The truncated chromosome can be maintained as an extra chromosome or together with the super-6 as a heterozygote.


Subject(s)
Chromosomes, Plant/genetics , Genetic Engineering/methods , Telomere/genetics , Translocation, Genetic/genetics , Zea mays/genetics , Blotting, Southern , Gene Expression Profiling , In Situ Hybridization, Fluorescence , Inheritance Patterns/genetics , Karyotyping , Pollen/genetics , Transgenes/genetics
19.
J Genet Genomics ; 37(1): 79-84, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20171580

ABSTRACT

It has been known for decades that the maize B chromosome undergoes nondisjunction at the second pollen mitosis. Fluorescence in-situ hybridization (FISH) was used to undertake a quantitative study of maize plants with differing numbers of B chromosomes to observe if instability increases by increasing B dosage in root tip tissue. B chromosome nondisjunction was basically absent at low copy number, but increased at higher B numbers. Thus, B nondisjunction rates are dependent on the dosage of B's in the sporophyte. Differences in nondisjunction were also documented between odd and even doses of the B. In plants that have inherited odd numbered doses of the B chromosome, B loss is nearly twice as likely as B gain in a somatic division. When comparing plants with even doses of B's to plants with odd doses of B's, plants with even numbers had a significantly higher chance to increase in number. Therefore, the B's non-disjunctive capacity, previously thought to be primarily restricted to the gametophyte, is present in sporophytic cells.


Subject(s)
Chromosomes, Plant/genetics , Gene Dosage , Nondisjunction, Genetic , Zea mays/genetics , Genetic Variation , Genome, Plant/genetics , In Situ Hybridization, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...