Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 187(3): 1795-1811, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34734276

ABSTRACT

Generalization of transcriptomics results can be achieved by comparison across experiments. This generalization is based on integration of interrelated transcriptomics studies into a compendium. Such a focus on the bigger picture enables both characterizations of the fate of an organism and distinction between generic and specific responses. Numerous methods for analyzing transcriptomics datasets exist. Yet, most of these methods focus on gene-wise dimension reduction to obtain marker genes and gene sets for, for example, pathway analysis. Relying only on isolated biological modules might result in missing important confounders and relevant contexts. We developed a method called Plant PhysioSpace, which enables researchers to compute experimental conditions across species and platforms without a priori reducing the reference information to specific gene sets. Plant PhysioSpace extracts physiologically relevant signatures from a reference dataset (i.e. a collection of public datasets) by integrating and transforming heterogeneous reference gene expression data into a set of physiology-specific patterns. New experimental data can be mapped to these patterns, resulting in similarity scores between the acquired data and the extracted compendium. Because of its robustness against platform bias and noise, Plant PhysioSpace can function as an inter-species or cross-platform similarity measure. We have demonstrated its success in translating stress responses between different species and platforms, including single-cell technologies. We have also implemented two R packages, one software and one data package, and a Shiny web application to facilitate access to our method and precomputed models.


Subject(s)
Botany/methods , Gene Expression Profiling/instrumentation , Plant Physiological Phenomena , Stress, Physiological , Software , Species Specificity , Transcriptome
3.
Plant Cell ; 29(10): 2336-2348, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29025960

ABSTRACT

Updates in nanopore technology have made it possible to obtain gigabases of sequence data. Prior to this, nanopore sequencing technology was mainly used to analyze microbial samples. Here, we describe the generation of a comprehensive nanopore sequencing data set with a median read length of 11,979 bp for a self-compatible accession of the wild tomato species Solanum pennellii We describe the assembly of its genome to a contig N50 of 2.5 MB. The assembly pipeline comprised initial read correction with Canu and assembly with SMARTdenovo. The resulting raw nanopore-based de novo genome is structurally highly similar to that of the reference S. pennellii LA716 accession but has a high error rate and was rich in homopolymer deletions. After polishing the assembly with Illumina reads, we obtained an error rate of <0.02% when assessed versus the same Illumina data. We obtained a gene completeness of 96.53%, slightly surpassing that of the reference S. pennellii Taken together, our data indicate that such long read sequencing data can be used to affordably sequence and assemble gigabase-sized plant genomes.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Nanopores , Solanum/genetics , Sequence Analysis, DNA
4.
J Exp Bot ; 68(2): 147-160, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28043950

ABSTRACT

The high efficiency of C4 photosynthesis relies on spatial division of labor, classically with initial carbon fixation in the mesophyll and carbon reduction in the bundle sheath. By employing grinding and serial filtration over liquid nitrogen, we enriched C4 tissues along a developing leaf gradient. This method treats both C4 tissues in an integrity-preserving and consistent manner, while allowing complementary measurements of metabolite abundance and enzyme activity, thus providing a comprehensive data set. Meta-analysis of this and the previous studies highlights the strengths and weaknesses of different C4 tissue separation techniques. While the method reported here achieves the least enrichment, it is the only one that shows neither strong 3' (degradation) bias, nor different severity of 3' bias between samples. The meta-analysis highlighted previously unappreciated observations, such as an accumulation of evidence that aspartate aminotransferase is more mesophyll specific than expected from the current NADP-ME C4 cycle model, and a shift in enrichment of protein synthesis genes from bundle sheath to mesophyll during development. The full comparative dataset is available for download, and a web visualization tool (available at http://www.plant-biochemistry.hhu.de/resources.html) facilitates comparison of the the Z. mays bundle sheath and mesophyll studies, their consistencies and their conflicts.


Subject(s)
Mesophyll Cells/metabolism , Photosynthesis , Zea mays/metabolism , Metabolome , Transcriptome , Zea mays/cytology
5.
Plant Cell ; 26(8): 3243-60, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25122153

ABSTRACT

C(4) photosynthesis outperforms the ancestral C(3) state in a wide range of natural and agro-ecosystems by affording higher water-use and nitrogen-use efficiencies. It therefore represents a prime target for engineering novel, high-yielding crops by introducing the trait into C(3) backgrounds. However, the genetic architecture of C(4) photosynthesis remains largely unknown. To define the divergence in gene expression modules between C(3) and C(4) photosynthesis during leaf ontogeny, we generated comprehensive transcriptome atlases of two Cleomaceae species, Gynandropsis gynandra (C(4)) and Tarenaya hassleriana (C(3)), by RNA sequencing. Overall, the gene expression profiles appear remarkably similar between the C(3) and C(4) species. We found that known C(4) genes were recruited to photosynthesis from different expression domains in C(3), including typical housekeeping gene expression patterns in various tissues as well as individual heterotrophic tissues. Furthermore, we identified a structure-related module recruited from the C(3) root. Comparison of gene expression patterns with anatomy during leaf ontogeny provided insight into genetic features of Kranz anatomy. Altered expression of developmental factors and cell cycle genes is associated with a higher degree of endoreduplication in enlarged C(4) bundle sheath cells. A delay in mesophyll differentiation apparent both in the leaf anatomy and the transcriptome allows for extended vein formation in the C(4) leaf.


Subject(s)
Gene Expression Regulation, Plant , Magnoliopsida/genetics , Photosynthesis/genetics , Transcriptome , Cluster Analysis , Gene Expression Profiling , Magnoliopsida/growth & development , Magnoliopsida/metabolism , Phylogeny , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism
6.
Plant Physiol ; 155(1): 142-56, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20543093

ABSTRACT

C(4) photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression is altered between C(3) and C(4) leaves, and to identify candidates associated with the C(4) pathway, we used massively parallel mRNA sequencing of closely related C(3) (Cleome spinosa) and C(4) (Cleome gynandra) species. Gene annotation was facilitated by the phylogenetic proximity of Cleome and Arabidopsis (Arabidopsis thaliana). Up to 603 transcripts differ in abundance between these C(3) and C(4) leaves. These include 17 transcription factors, putative transport proteins, as well as genes that in Arabidopsis are implicated in chloroplast movement and expansion, plasmodesmatal connectivity, and cell wall modification. These are all characteristics known to alter in a C(4) leaf but that previously had remained undefined at the molecular level. We also document large shifts in overall transcription profiles for selected functional classes. Our approach defines the extent to which transcript abundance in these C(3) and C(4) leaves differs, provides a blueprint for the NAD-malic enzyme C(4) pathway operating in a dicotyledon, and furthermore identifies potential regulators. We anticipate that comparative transcriptomics of closely related species will provide deep insight into the evolution of other complex traits.


Subject(s)
Cleome/genetics , Cleome/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Photosynthesis/genetics , Carbon/metabolism , Genes, Plant/genetics , High-Throughput Nucleotide Sequencing , Models, Biological , Plant Leaves/genetics , Plant Leaves/physiology , Polymerase Chain Reaction , RNA, Messenger/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Species Specificity , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...