Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Schizophr Res ; 269: 9-17, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703519

ABSTRACT

BACKGROUND: 22q11.2 deletion syndrome (22q11DS) is one of the most robust genetic predictors of psychosis and other psychiatric illnesses. In this study, we examined 22q11DS subjects' acoustic startle responses (ASRs), which putatively index psychosis risk. Latency of the ASR is a presumptive marker of neural processing speed and is prolonged (slower) in schizophrenia. ASR measures correlate with increased psychosis risk, depend on glutamate and dopamine receptor signaling, and could serve as translational biomarkers in interventions for groups at high psychosis risk. METHODS: Startle magnitude, latency, and prepulse inhibition were assessed with a standard acoustic startle paradigm in 31 individuals with 22q11.2DS and 32 healthy comparison (HC) subjects. Surface electrodes placed on participants' orbicularis oculi recorded the electromyographic signal in ASR eyeblinks. Individuals without measurable startle blinks in the initial habituation block were classified as non-startlers. RESULTS: Across the startle session, the ASR magnitude was significantly lower in 22q11DS subjects than HCs because a significantly higher proportion of 22q11DS subjects were non-startlers. Latency of the ASR to pulse-alone stimuli was significantly slower in 22q11DS than HC subjects. Due to the overall lower 22q11DS startle response frequency and magnitudes prepulse inhibition could not be analyzed. CONCLUSIONS: Reduced magnitude and slow latency of 22q11DS subjects' responses suggest reduced central nervous system and neuronal responsiveness. These findings are consistent with significant cognitive impairments observed in 22q11DS subjects. Further research is needed to untangle the connections among basic neurotransmission dysfunction, psychophysiological responsiveness, and cognitive impairment.

2.
BMC Psychiatry ; 23(1): 425, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37312091

ABSTRACT

BACKGROUND: 22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal interstitial-deletion disorder, occurring in approximately 1 in 2000 to 6000 live births. Affected individuals exhibit variable clinical phenotypes that can include velopharyngeal anomalies, heart defects, T-cell-related immune deficits, dysmorphic facial features, neurodevelopmental disorders, including autism, early cognitive decline, schizophrenia, and other psychiatric disorders. Developing comprehensive treatments for 22q11.2DS requires an understanding of both the psychophysiological and neural mechanisms driving clinical outcomes. Our project probes the core psychophysiological abnormalities of 22q11.2DS in parallel with molecular studies of stem cell-derived neurons to unravel the basic mechanisms and pathophysiology of 22q11.2-related psychiatric disorders, with a primary focus on psychotic disorders. Our study is guided by the central hypothesis that abnormal neural processing associates with psychophysiological processing and underlies clinical diagnosis and symptomatology. Here, we present the scientific background and justification for our study, sharing details of our study design and human data collection protocol. METHODS: Our study is recruiting individuals with 22q11.2DS and healthy comparison subjects between the ages of 16 and 60 years. We are employing an extensive psychophysiological assessment battery (e.g., EEG, evoked potential measures, and acoustic startle) to assess fundamental sensory detection, attention, and reactivity. To complement these unbiased measures of cognitive processing, we will develop stem-cell derived neurons and examine neuronal phenotypes relevant to neurotransmission. Clinical characterization of our 22q11.2DS and control participants relies on diagnostic and research domain criteria assessments, including standard Axis-I diagnostic and neurocognitive measures, following from the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) and the North American Prodrome Longitudinal Study (NAPLS) batteries. We are also collecting measures of autism spectrum (ASD) and attention deficit/hyperactivity disorder (ADHD)-related symptoms. DISCUSSION: Studying 22q11.2DS in adolescence and adulthood via deep phenotyping across multiple clinical and biological domains may significantly increase our knowledge of its core disease processes. Our manuscript describes our ongoing study's protocol in detail. These paradigms could be adapted by clinical researchers studying 22q11.2DS, other CNV/single gene disorders, or idiopathic psychiatric syndromes, as well as by basic researchers who plan to incorporate biobehavioral outcome measures into their studies of 22q11.2DS.


Subject(s)
Autistic Disorder , Child Development Disorders, Pervasive , DiGeorge Syndrome , Psychotic Disorders , Adolescent , Adult , Humans , Child , Young Adult , Middle Aged , DiGeorge Syndrome/diagnosis , Longitudinal Studies , Autistic Disorder/diagnosis , Chromosome Deletion
3.
J Clin Psychopharmacol ; 41(2): 103-113, 2021.
Article in English | MEDLINE | ID: mdl-33587397

ABSTRACT

BACKGROUND: Schizophrenia (SCZ) is a neurodevelopmental disorder that leads to poor social function. Oxytocin (OXT), a neuropeptide involved in social cognition, is a potential therapeutic agent for alleviating social dysfunction. Therefore, we investigated the effects of intranasal oxytocin (IN-OXT) on emotional processes in experimental interactive social contexts in individuals with SCZ. METHODS: In a male-only parallel randomized placebo-controlled double-blind trial, we investigated the effects of IN-OXT (24 IU) on visual fixation on pictures of faces and emotion recognition in an interactive ball-tossing game that probed processing of social and nonsocial stimuli. RESULTS: Intranasal oxytocin enhanced the recognition of emotions during an emotion-based ball-tossing game. This improvement was specific to the game that included social cue processing. Intranasal oxytocin did not affect eye gaze duration or gaze dwell time on faces in these patients. CONCLUSIONS: An acute low dose of IN-OXT had a modest effect on social cue processing and was limited to emotion recognition. Higher doses and long-term trials targeting emotional processing in SCZ may lead to improved social function.


Subject(s)
Emotions , Oxytocin/pharmacology , Recognition, Psychology/drug effects , Schizophrenia/drug therapy , Administration, Intranasal , Adult , Case-Control Studies , Dose-Response Relationship, Drug , Double-Blind Method , Fixation, Ocular/drug effects , Humans , Male , Middle Aged , Oxytocin/administration & dosage , Pilot Projects , Social Perception/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...