Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098444

ABSTRACT

Commercially available bioactive glasses (BAGs) are exclusively used in powder form, due to their tendency to crystallize. Silicate BAG 1393 was developed to allow fiber drawing and scaffold sintering, but its slow degradation limits its potential. To enable scaffold manufacturing while maintaining glass dissolution rate close to that of commercially available BAGs, the borosilicate glass 1393B20 was developed. This study investigates the potential of 1393B20 scaffolds to support bone regeneration and mineralization in vitro and in vivo, in comparison to silicate 1393. Both scaffolds supported human adipose stem cells proliferation, either in direct contact for the 1393, or mainly around for the 1393B20. Similarly, both BAGs induced osteogenesis and angiogenesis in vitro, with a better pro-angiogenic influence of the 1393B20. In addition, these scaffolds supported bone regeneration and osteoclast/osteoblast activity in vivo in critical-sized rat calvarial defect. Nevertheless, mineralization and collagen formation were significantly enhanced for the 1393B20, at 3-months post-implantation, assigned to faster and more complete dissolution of the scaffolds. Thus, 1393B20 demonstrates greater promise for bone tissue engineering certainly due to its time-controlled release of boron and silicon. STATEMENT OF SIGNIFICANCE: Bioactive glasses (BAGs) show great promise in bone tissue engineering as they effectively bond with bone tissue, fostering integration and regeneration. Silicate BAG 1393 was developed to allow fiber drawing and scaffold sintering, but its slow degradation limits its potential. To enable scaffold manufacturing while maintaining glass dissolution rate close to that of commercially available BAGs, the borosilicate glass 1393B20 was developed. Both BAGs induced osteogenesis and angiogenesis in vitro, with a better pro-angiogenic influence of the 1393B20. The presence of boron in the 1393B20 enhanced mineralization and collagen formation in vivo compared to 1393, probably due to its faster dissolution rate. Here, 1393B20 demonstrated greater promise for bone tissue engineering compared to the well-known 1393 BAG.

2.
J Mater Sci Mater Med ; 35(1): 17, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507150

ABSTRACT

3D borosilicate bioactive glass (1393B20 and B12.5MgSr) scaffolds were prepared by robocasting, with and without a dense layer at the top. Pore graded scaffolds are promising as they allow for membrane deposition and could limit the risk of soft tissue infiltration. In vitro dissolution was studied in tris(hydroxymethyl)aminomethane (TRIS) and Simulated Body Fluid (SBF). 1393B20 scaffolds dissolved faster than B12.5MgSr in TRIS whereas they dissolved slower in SBF. The difference in dissolution profiles, as a function of the medium used, is assigned to the different rates of precipitation of hydroxyapatite (HA). While the precipitation of calcium phosphate (CaP) in the form of HA, first sign of bioactivity, was confirmed by ICP, FTIR-ATR and SEM-EDX analysis for both compositions, 1393B20 was found to precipitate HA at a faster rate. The presence of a dense top layer did not significantly impact the dissolution rate and CaP precipitation. In vitro cell culture was performed using human adipose-derived stem cells (hADSCs). Prior to cell plating, a preincubation of 3 days was found optimum to prevent burst ion release. In direct contact, cells proliferate and spread on the scaffolds while maintaining characteristic spindle morphology. Cell plated on 1393B20 scaffolds showed increased viability when compared to cell plated on B12.5MgSr. The lower cell viability, when testing B12.5MgSr, was assigned to the depletion of Ca2+ ions from culture medium and higher pH. Static cell culture leads to believe that the scaffold produced from the 1393B20 glass composition are promising in bone regeneration applications.


Subject(s)
Glass , Tissue Scaffolds , Humans , Glass/chemistry , Tissue Scaffolds/chemistry , Durapatite/chemistry , Calcium Phosphates/chemistry
3.
Sci Rep ; 14(1): 3997, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38369547

ABSTRACT

Crystallisation of bioactive glasses has been claimed to negatively affect the ion release from bioactive glasses. Here, we compare ion release and mineralisation in Tris-HCl buffer solution for a series of glass-ceramics and their parent glasses in the system SiO2-CaO-P2O5-CaF2. Time-resolved X-ray diffraction analysis of glass-ceramic degradation, including quantification of crystal fractions by full pattern refinement, show that the glass-ceramics precipitated apatite faster than the corresponding glasses, in agreement with faster ion release from the glass-ceramics. Imaging by transmission electron microscopy and X-ray nano-computed tomography suggest that this accelerated degradation may be caused by the presence of nano-sized channels along the internal crystal/glassy matrix interfaces. In addition, the presence of crystalline fluorapatite in the glass-ceramics facilitated apatite nucleation and crystallisation during immersion. These results suggest that the popular view of bioactive glass crystallisation being a disadvantage for degradation, apatite formation and, subsequently, bioactivity may depend on the actual system study and, thus, has to be reconsidered.

4.
Tissue Eng Part B Rev ; 30(4): 477-489, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38183633

ABSTRACT

The repair and regeneration of critical-sized bone defects remain an urgent challenge. Bone tissue engineering represents an exciting solution for regeneration of large bone defects. Recently, the importance of innervation in tissue-engineered bone regeneration has been increasingly recognized. The cross talk between nerve and bone provides important clues for bone repair and regeneration. Furthermore, the promotion of angiogenesis by innervation can accelerate new bone formation. However, the mechanisms involved in the promotion of vascular and bone regeneration by the nervous system have not yet been established. In addition, simultaneous neurogenesis and vascularization in bone tissue engineering have not been fully investigated. This article represents the first review on the effects of innervation in enhancing angiogenesis and osteogenesis in bone and dental tissue engineering. Cutting-edge research on the effects of innervation through biomaterials on bone and dental tissue repairs is reviewed. The effects of various nerve-related factors and cells on bone regeneration are discussed. Finally, novel clinical applications of innervation for bone, dental, and craniofacial tissue regeneration are also examined.


Subject(s)
Bone and Bones , Neovascularization, Physiologic , Osteogenesis , Tissue Engineering , Tissue Engineering/methods , Humans , Animals , Bone and Bones/blood supply , Bone and Bones/innervation , Bone Regeneration/drug effects , Tooth/innervation , Angiogenesis
SELECTION OF CITATIONS
SEARCH DETAIL