Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 14: 1127708, 2023.
Article in English | MEDLINE | ID: mdl-37034078

ABSTRACT

Introduction: In concussion, clinical and physiological recovery are increasingly recognized as diverging definitions. This study investigated whether central microglial activation persisted in participants with concussion after receiving an unrestricted return-to-play (uRTP) designation using [18F]DPA-714 PET, an in vivo marker of microglia activation. Methods: Eight (5 M, 3 F) current athletes with concussion (Group 1) and 10 (5 M, 5 F) healthy collegiate students (Group 2) were enrolled. Group 1 completed a pre-injury (Visit1) screen, follow-up Visit2 within 24 h of a concussion diagnosis, and Visit3 at the time of uRTP. Healthy participants only completed assessments at Visit2 and Visit3. At Visit2, all participants completed a multidimensional battery of tests followed by a blood draw to determine genotype and study inclusion. At Visit3, participants completed a clinical battery of tests, brain MRI, and brain PET; no imaging tests were performed outside of Visit3. Results: For Group 1, significant differences were observed between Visits 1 and 2 (p < 0.05) in ImPACT, SCAT5 and SOT performance, but not between Visit1 and Visit3 for standard clinical measures (all p > 0.05), reflecting clinical recovery. Despite achieving clinical recovery, PET imaging at Visit3 revealed consistently higher [18F]DPA-714 tracer distribution volume (VT) of Group 1 compared to Group 2 in 10 brain regions (p < 0.001) analyzed from 164 regions of the whole brain, most notably within the limbic system, dorsal striatum, and medial temporal lobe. No notable differences were observed between clinical measures and VT between Group 1 and Group 2 at Visit3. Discussion: Our study is the first to demonstrate persisting microglial activation in active collegiate athletes who were diagnosed with a sport concussion and cleared for uRTP based on a clinical recovery.

2.
Epilepsy Behav ; 122: 108204, 2021 09.
Article in English | MEDLINE | ID: mdl-34311181

ABSTRACT

Epilepsy surgery remains underutilized, in part because non-invasive methods of potential seizure foci localization are inadequate. We used high-resolution, parametric quantification from dynamic 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (dFDG-PET) imaging to locate hypometabolic foci in patients whose standard clinical static PET images were normal. We obtained dFDG-PET brain images with simultaneous EEG in a one-hour acquisition on seven patients with no MRI evidence of focal epilepsy to record uptake and focal radiation decay. Images were attenuation- and motion-corrected and co-registered with high-resolution T1-weighted patient MRI and segmented into 18 regions of interest (ROI) per hemisphere. Tracer uptake was calibrated with a model corrected blood input function with partial volume (PV) corrections to generate tracer parametric maps compared between mean radiation values between hemispheres with z-scores. We identified ROI with the lowest negative z scores (<-1.65 SD) as hypometabolic. Dynamic 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography ( found focal regions of altered metabolism in all cases in which standard clinical FDG-PET found no abnormalities. This pilot study of dynamic FDG-PET suggests that further research is merited to evaluate whether glucose dynamics offer improved clinical utility for localization of epileptic foci over standard static techniques.


Subject(s)
Epilepsies, Partial , Fluorodeoxyglucose F18 , Electroencephalography , Epilepsies, Partial/diagnostic imaging , Humans , Magnetic Resonance Imaging , Pilot Projects , Positron-Emission Tomography
3.
Front Med (Lausanne) ; 8: 618645, 2021.
Article in English | MEDLINE | ID: mdl-33898476

ABSTRACT

Recently, we developed a three-compartment dual-output model that incorporates spillover (SP) and partial volume (PV) corrections to simultaneously estimate the kinetic parameters and model-corrected blood input function (MCIF) from dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) images of mouse heart in vivo. In this study, we further optimized this model and utilized the estimated MCIF to compute cerebral FDG uptake rates, K i , from dynamic total-body FDG PET images of control Wistar-Kyoto (WKY) rats and compared to those derived from arterial blood sampling in vivo. Dynamic FDG PET scans of WKY rats (n = 5), fasted for 6 h, were performed using the Albira Si Trimodal PET/SPECT/CT imager for 60 min. Arterial blood samples were collected for the entire imaging duration and then fitted to a seven-parameter function. The 60-min list mode PET data, corrected for attenuation, scatter, randoms, and decay, were reconstructed into 23 time bins. A 15-parameter dual-output model with SP and PV corrections was optimized with two cost functions to compute MCIF. A four-parameter compartment model was then used to compute cerebral Ki. The computed area under the curve (AUC) and K i were compared to that derived from arterial blood samples. Experimental and computed AUCs were 1,893.53 ± 195.39 kBq min/cc and 1,792.65 ± 155.84 kBq min/cc, respectively (p = 0.76). Bland-Altman analysis of experimental vs. computed K i for 35 cerebral regions in WKY rats revealed a mean difference of 0.0029 min-1 (~13.5%). Direct (AUC) and indirect (Ki) comparisons of model computations with arterial blood sampling were performed in WKY rats. AUC and the downstream cerebral FDG uptake rates compared well with that obtained using arterial blood samples. Experimental vs. computed cerebral K i for the four super regions including cerebellum, frontal cortex, hippocampus, and striatum indicated no significant differences.

4.
J Am Heart Assoc ; 9(7): e015154, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32248762

ABSTRACT

Background In spontaneously hypertensive rats (SHR) we observed profound myocardial metabolic changes during early hypertension before development of cardiac dysfunction and left ventricular hypertrophy. In this study, we evaluated whether metformin improved myocardial metabolic abnormalities and simultaneously prevented contractile dysfunction and left ventricular hypertrophy in SHR. Methods and Results SHR and control Wistar-Kyoto rats were treated with metformin from 2 to 5 months of age, when SHR hearts exhibit metabolic abnormalities and develop cardiac dysfunction and left ventricular hypertrophy. We evaluated the effect of metformin on myocardial glucose uptake rates with dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography. We used cardiac MRI in vivo to assess the effect of metformin on ejection fraction, left ventricular mass, and end-diastolic wall thickness, and also analyzed metabolites, AMP-activated protein kinase and mammalian target-of-rapamycin activities, and mean arterial blood pressure. Metformin-treated SHR had lower mean arterial blood pressure but remained hypertensive. Cardiac glucose uptake rates, left ventricular mass/tibia length, wall thickness, and circulating free fatty acid levels decreased to normal, and ejection fraction improved in treated SHR. Hearts of treated SHR exhibited increased AMP-activated protein kinase phosphorylation and reduced mammalian target-of-rapamycin activity. Cardiac metabolite profiling demonstrated that metformin decreased fatty acyl carnitines and markers of oxidative stress in SHR. Conclusions Metformin reduced blood pressure, normalized myocardial glucose uptake, prevented left ventricular hypertrophy, and improved cardiac function in SHR. Metformin may exert its effects by normalizing myocardial AMPK and mammalian target-of-rapamycin activities, improving fatty acid oxidation, and reducing oxidative stress. Thus, metformin may be a new treatment to prevent or ameliorate chronic hypertension-induced left ventricular hypertrophy.


Subject(s)
Arterial Pressure/drug effects , Cardiovascular Agents/pharmacology , Energy Metabolism/drug effects , Hypertension/drug therapy , Hypertrophy, Left Ventricular/prevention & control , Metformin/pharmacology , Myocardium/metabolism , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Disease Models, Animal , Fatty Acids/metabolism , Glucose/metabolism , Hypertension/metabolism , Hypertension/physiopathology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Oxidation-Reduction , Oxidative Stress/drug effects , Rats, Inbred SHR , Rats, Inbred WKY , TOR Serine-Threonine Kinases/metabolism
5.
Phys Med Biol ; 64(16): 165010, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31307015

ABSTRACT

The purpose of this work was to compute blood input function from the inferior vena cava (IVC) with partial volume (PV) corrections and compare to that obtained from the left ventricular blood pool (LVBP) with spill-over (SP) and PV corrections. These were then used to compute and validate rates of myocardial 2-deoxy-2-[18F]fluoro-D-glucose (FDG) uptake (Ki) from dynamic positron emission tomography (PET) images of rat hearts in vivo in comparison to that obtained from invasive arterial blood sampling. Whole body 60 min dynamic FDG PET/CT imaging of n = 8 control Wistar Kyoto (WKY) rats were performed using Albira trimodal PET/CT/SPECT scanner. Image derived blood input function (IDIF) obtained from IVC corrected for PV averaging (IVC-PV) and IDIF from the left ventricular blood pool (LVBP) with SP and PV corrections (LVBP-SP-PV) were computed. Next, computed Ki (indirect comparison) in a 5-parameter (using IVC-PV) and a 15-parameter (using LVBP-SP-PV) 3-compartment models in WKY rat hearts in vivo were compared to that obtained using arterial blood sampling reported in literature in control Spraque Dawley (SD) rats. Using IVC-PV in a three-compartment five-parameter model resulted in a ~46% deviation in the mean computed Ki compared to that obtained with LVBP-SP-PV in a three-compartment 15-parameter model with a ~57% deviation in the mean computed Ki. The mean computed Ki in WKY rat hearts using the above methods, however, did not differ significantly to that obtained from invasive arterial blood sampling in SD rat hearts (p  = 0.91 for IVC-PV and p  = 0.58 for LVBP-SP-PV). Hence, Ki obtained in WKY rat hearts with input curve from IVC (IVC-PV) in a dynamic FDG PET scan is comparatively more repetitive to that obtained from the LVBP (LVBP-SP-PV). Ki computed using both the methods, however, agree well with each other and that obtained using arterial blood sampling.


Subject(s)
Glucose/metabolism , Heart Ventricles/diagnostic imaging , Image Processing, Computer-Assisted , Myocardium/metabolism , Positron Emission Tomography Computed Tomography , Vena Cava, Inferior/diagnostic imaging , Vena Cava, Inferior/physiology , Algorithms , Animals , Biological Transport , Fluorodeoxyglucose F18 , Kinetics , Male , Rats , Rats, Inbred WKY
6.
Front Med (Lausanne) ; 6: 88, 2019.
Article in English | MEDLINE | ID: mdl-31131277

ABSTRACT

Ionizing radiation constitutes a health risk to imaging scientists and study animals. Both PET and CT produce ionizing radiation. CT doses in pre-clinical in vivo imaging typically range from 50 to 1,000 mGy and biological effects in mice at this dose range have been previously described. [18F]FDG body doses in mice have been estimated to be in the range of 100 mGy for [18F]FDG. Yearly, the average whole body doses due to handling of activity by PET technologists are reported to be 3-8 mSv. A preclinical PET/CT system is presented with design features which make it suitable for small animal low-dose imaging. The CT subsystem uses a X-source power that is optimized for small animal imaging. The system design incorporates a spatial beam shaper coupled with a highly sensitive flat-panel detector and very fast acquisition (<10 s) which allows for whole body scans with doses as low as 3 mGy. The mouse total-body PET subsystem uses a detector architecture based on continuous crystals, coupled to SiPM arrays and a readout based in rows and columns. The PET field of view is 150 mm axial and 80 mm transaxial. The high solid-angle coverage of the sample and the use of continuous crystals achieve a sensitivity of 9% (NEMA) that can be leveraged for use of low tracer doses and/or performing rapid scans. The low-dose imaging capabilities of the total-body PET subsystem were tested with NEMA phantoms, in tumor models, a mouse bone metabolism scan and a rat heart dynamic scan. The CT imaging capabilities were tested in mice and in a low contrast phantom. The PET low-dose phantom and animal experiments provide evidence that image quality suitable for preclinical PET studies is achieved. Furthermore, CT image contrast using low dose scan settings was suitable as a reference for PET scans. Total-body mouse PET/CT studies could be completed with total doses of <10 mGy.

7.
Flow Turbul Combust ; 101(4): 973-992, 2018.
Article in English | MEDLINE | ID: mdl-30613184

ABSTRACT

Large Eddy Simulations of an unconfined turbulent lean premixed flame, which is stabilised behind a bluff body, are conducted using unstrained flamelets as the sub-grid scale combustion closure. The statistics from the simulations are compared with the corresponding data obtained from the experiment and it is demonstrated that the experimental observations are well captured. The relative positioning of the shear layers and the flame brush are analysed to understand the radial variations of the turbulent kinetic energy at various streamwise locations. These results are also compared to confined bluff body stabilised flames, to shed light on the relative role of incoming and shear driven turbulence on the behaviour of the flame brush and the turbulent kinetic energy variation across it.

SELECTION OF CITATIONS
SEARCH DETAIL
...