Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 14: 1054163, 2023.
Article in English | MEDLINE | ID: mdl-36896346

ABSTRACT

Introduction: People with dementia (PwD) often present with neuropsychiatric symptoms (NPS). NPS are of substantial burden to the patients, and current treatment options are unsatisfactory. Investigators searching for novel medications need animal models that present disease-relevant phenotypes and can be used for drug screening. The Senescence Accelerated Mouse-Prone 8 (SAMP8) strain shows an accelerated aging phenotype associated with neurodegeneration and cognitive decline. Its behavioural phenotype in relation to NPS has not yet been thoroughly investigated. Physical and verbal aggression in reaction to the external environment (e.g., interaction with the caregiver) is one of the most prevalent and debilitating NPS occurring in PwD. Reactive aggression can be studied in male mice using the Resident-Intruder (R-I) test. SAMP8 mice are known to be more aggressive than the Senescence Accelerated Mouse-Resistant 1 (SAMR1) control strain at specific ages, but the development of the aggressive phenotype over time, is still unknown. Methods: In our study, we performed a longitudinal, within-subject, assessment of aggressive behaviour of male SAMP8 and SAMR1 mice at 4, 5, 6 and 7 months of age. Aggressive behaviour from video recordings of the R-I sessions was analysed using an in-house developed behaviour recognition software. Results: SAMP8 mice were more aggressive relative to SAMR1 mice starting at 5 months of age, and the phenotype was still present at 7 months of age. Treatment with risperidone (an antipsychotic frequently used to treat agitation in clinical practice) reduced aggression in both strains. In a three-chamber social interaction test, SAMP8 mice also interacted more fervently with male mice than SAMR1, possibly because of their aggression-seeking phenotype. They did not show any social withdrawal. Discussion: Our data support the notion that SAMP8 mice might be a useful preclinical tool to identify novel treatment options for CNS disorders associated with raised levels of reactive aggression such as dementia.

2.
Front Psychiatry ; 13: 1052233, 2022.
Article in English | MEDLINE | ID: mdl-36506416

ABSTRACT

Neuropsychiatric symptoms (NPS) affect people with dementia (PwD) almost universally across all stages of the disease, and regardless of its exact etiology. NPS lead to disability and reduced quality of life of PwD and their caregivers. NPS include hyperactivity (agitation and irritability), affective problems (anxiety and depression), psychosis (delusions and hallucinations), apathy, and sleep disturbances. Preclinical studies have shown that the orexin neuropeptide system modulates arousal and a wide range of behaviors via a network of axons projecting from the hypothalamus throughout almost the entire brain to multiple, even distant, regions. Orexin neurons integrate different types of incoming information (e.g., metabolic, circadian, sensory, emotional) and convert them into the required behavioral output coupled to the necessary arousal status. Here we present an overview of the behavioral domains influenced by the orexin system that may be relevant for the expression of some critical NPS in PwD. We also hypothesize on the potential effects of pharmacological interference with the orexin system in the context of NPS in PwD.

3.
Physiol Behav ; 250: 113787, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35346733

ABSTRACT

Agitation, which comprises verbal or physical aggression and hyperactivity, is one of the most frequent neuropsychiatric symptoms observed in patients with Alzheimer's disease (AD). It often co-occurs with dysregulated circadian rhythms. Current medications are associated with serious adverse effects, and novel therapeutics are therefore needed. Rodent models can be instrumental to provide a first signal for potential efficacy of novel drug candidates. Longitudinal data assessing the face validity of such models for AD-related agitation are largely missing. We employed telemeterized APPswe mice, a frequently used AD transgenic mouse line overexpressing the human beta-amyloid precursor protein (APP) with the Swedish KM670/671NL mutation, to study the occurrence and progression of changes in reactive aggressive behavior as well as the circadian profile of locomotor activity and body temperature. Analysis was conducted between 5 and 11 months of age, at regular 2-months intervals. The aggressivity of all mice was highest at 5 months and waned with increasing age. APPswe mice were more aggressive than WT at 5 and 7 months of age. The locomotor activity and body temperature of WT mice declined with increasing age, while that of APPswe mice remained rather constant. This genotype difference was solely evident during the active, dark phase. APPswe mice did not display a phase shift of their circadian rhythms. We conclude that the APPswe mouse line can recapitulate some of the behavioral disturbances observed in AD, including an agitation-relevant phenotype characterized by active phase hyperactivity and aggressivity. It does not recapitulate the nighttime disturbances (also characterized by hyperactivity) and the shift of circadian rhythms observed in AD patients. Therefore, the APPswe strain could be used at specific ages to model a subset of agitation-relevant behavioral problems and to test the modulatory effects of drugs.


Subject(s)
Alzheimer Disease , Aggression , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Circadian Rhythm/genetics , Disease Models, Animal , Humans , Mice , Mice, Transgenic
4.
J Hepatol ; 59(2): 285-91, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23542345

ABSTRACT

BACKGROUND & AIMS: Conflicting results have been reported regarding the impact of hepatitis B virus X protein (HBx) expression on liver regeneration triggered by partial hepatectomy (PH). In the present report we investigated the mechanisms by which HBx protein alters hepatocyte proliferation after PH. METHODS: PH was performed on a transgenic mouse model in which HBx expression is under the control of viral regulatory elements and liver regeneration was monitored. LPS, IL-6 neutralizing antibody, and SB203580 were injected after PH to evaluate IL-6 participation during liver regeneration. RESULTS: Cell cycle progression of hepatocytes was delayed in HBx transgenic mice compared to WT animals. Moreover, HBx induced higher secretion of IL-6 soon after PH. Upregulation of IL-6 was associated with an elevation of STAT3 phosphorylation, SOCS3 transcript accumulation and a decrease in ERK1/2 phosphorylation in the livers of HBx transgenic mice. The involvement of IL-6 overexpression in cell cycle deregulation was confirmed by the inhibition of liver regeneration in control mice after the upregulation of IL-6 expression using LPS. In addition, IL-6 neutralization with antibodies was able to restore liver regeneration in HBx mice. Finally, the direct role of p38 in IL-6 secretion after PH was demonstrated using SB203580, a pharmacological inhibitor. CONCLUSIONS: HBx is able to induce delayed hepatocyte proliferation after PH, and HBx-induced IL-6 overexpression is involved in delayed liver regeneration. By modulating IL-6 expression during liver proliferation induced by stimulation of the cellular microenvironment, HBx may participate in cell cycle deregulation and progression of liver disease.


Subject(s)
Interleukin-6/physiology , Liver Regeneration/physiology , Trans-Activators/physiology , Animals , Antibodies, Neutralizing/administration & dosage , Cell Cycle , Cell Proliferation , Enhancer Elements, Genetic , Hepatectomy , Hepatitis B virus/genetics , Hepatitis B virus/pathogenicity , Hepatitis B virus/physiology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/virology , Hepatocytes/immunology , Hepatocytes/pathology , Hepatocytes/virology , Host-Pathogen Interactions , Humans , Imidazoles/administration & dosage , Interleukin-6/antagonists & inhibitors , Liver Regeneration/genetics , Liver Regeneration/immunology , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Promoter Regions, Genetic , Pyridines/administration & dosage , Trans-Activators/genetics , Viral Regulatory and Accessory Proteins
5.
PLoS One ; 6(12): e25096, 2011.
Article in English | MEDLINE | ID: mdl-22162746

ABSTRACT

Current treatments for HBV chronic carriers using interferon alpha or nucleoside analogues are not effective in all patients and may induce the emergence of HBV resistant strains. Bay 41-4109, a member of the heteroaryldihydropyrimidine family, inhibits HBV replication by destabilizing capsid assembly. The aim of this study was to determine the antiviral effect of Bay 41-4109 in a mouse model with humanized liver and the spread of active HBV. Antiviral assays of Bay 41-4109 on HepG2.2.15 cells constitutively expressing HBV, displayed an IC(50) of about 202 nM with no cell toxicity. Alb-uPA/SCID mice were transplanted with human hepatocytes and infected with HBV. Ten days post-infection, the mice were treated with Bay 41-4109 for five days. During the 30 days of follow-up, the HBV load was evaluated by quantitative PCR. At the end of treatment, decreased HBV viremia of about 1 log(10) copies/ml was observed. By contrast, increased HBV viremia of about 0.5 log(10) copies/ml was measured in the control group. Five days after the end of treatment, a rebound of HBV viremia occurred in the treated group. Furthermore, 15 days after treatment discontinuation, a similar expression of the viral capsid was evidenced in liver biopsies. Our findings demonstrate that Bay 41-4109 displayed antiviral properties against HBV in humanized Alb-uPA/SCID mice and confirm the usefulness of Alb-uPA/SCID mice for the evaluation of pharmaceutical compounds. The administration of Bay 41-4109 may constitute a new strategy for the treatment of patients in escape from standard antiviral therapy.


Subject(s)
Albumins/metabolism , Antiviral Agents/pharmacology , Hepatitis B virus/metabolism , Hepatitis B/drug therapy , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Biopsy/methods , DNA, Viral/metabolism , Hepatocytes/cytology , Humans , Immunohistochemistry/methods , Kinetics , Liver/metabolism , Liver/virology , Mice , Mice, SCID , Viral Load
6.
J Endocrinol ; 210(3): 335-47, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21700659

ABSTRACT

Increased glucose production is associated with fasting hyperglycaemia in type 2 diabetes but whether or not it causes glucose intolerance is unclear. This study sought to determine whether a primary defect in gluconeogenesis (GNG) resulting in elevated glucose production is sufficient to induce glucose intolerance in the absence of insulin resistance and impaired insulin secretion. Progression of glucose intolerance was assessed in phosphoenolpyruvate carboxykinase (PEPCK) transgenic rats, a genetic model with a primary increase in GNG. Young (4-5 weeks of age) and adult (12-14 weeks of age) PEPCK transgenic and Piebald Virol Glaxo (PVG/c) control rats were studied. GNG, insulin sensitivity, insulin secretion and glucose tolerance were assessed by intraperitoneal and intravascular substrate tolerance tests and hyperinsulinaemic/euglycaemic clamps. Despite elevated GNG and increased glucose appearance, PEPCK transgenic rats displayed normal glucose tolerance due to adequate glucose disposal and robust glucose-mediated insulin secretion. Glucose intolerance only became apparent in the PEPCK transgenic rats following the development of insulin resistance (both hepatic and peripheral) and defective glucose-mediated insulin secretion. Taken together, a single genetic defect in GNG leading to increased glucose production does not adversely affect glucose tolerance. Insulin resistance and impaired glucose-mediated insulin secretion are required to precipitate glucose intolerance in a setting of chronic glucose oversupply.


Subject(s)
Gluconeogenesis/physiology , Glucose Intolerance/etiology , Insulin/metabolism , Animals , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Female , Fructose-Bisphosphatase/genetics , Gluconeogenesis/genetics , Glucose Intolerance/genetics , Glucose Intolerance/physiopathology , Glucose-6-Phosphatase/genetics , Insulin Resistance/genetics , Insulin Resistance/physiology , Insulin Secretion , Kidney/metabolism , Liver/metabolism , Male , Models, Biological , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Transgenic
7.
Antivir Ther ; 15(6): 861-9, 2010.
Article in English | MEDLINE | ID: mdl-20834098

ABSTRACT

BACKGROUND: Treatment of HBV chronic carriers using interferon (IFN)-α or nucleoside/nucleotide analogues fails to suppress viral infection. Type-II IFN-γ has been shown to inhibit HBV replication. The goal of the present work was to evaluate the antiviral efficacy against HBV of a thermostable IFN-γ variant isolated using Massive Mutagenesis and thermoresistant selection (THR) technologies. METHODS: The thermostability of wild-type (wt) and S63C IFN-γ was determined in vitro and in vivo. Activation of the IFN-γ responsive element by wt and S63C IFN-γ was tested using a luciferase assay. HepG2.2.15 cells constitutively expressing HBV were used to analyse the antiviral activity of wt and S63C IFN-γ against HBV replication. Intracellular HBV DNA was detected by Southern blot and quantified by real-time PCR analyses. RESULTS: S63C IFN-γ was shown to be more thermostable and had a longer half-life than wt IFN-γ. Both wt and S63C IFN-γ displayed a similar capacity to activate the IFN pathway. The treatment of HepG2.2.15 cells with wt or S63C IFN-γ induced the inhibition of HBV viral replication. After heating, S63C IFN-γ displayed better conservation of its antiviral activity against HBV when compared with wt IFN-γ. CONCLUSIONS: These results confirm that the THR method can be used to isolate mutants with enhanced thermostability and demonstrate that a thermostable IFN-γ variant presents antiviral properties against HBV replication. This molecule could provide a new strategy to treat patients who do not respond to antiviral therapy.


Subject(s)
DNA Replication , Hepatitis B virus/physiology , Interferon-gamma/pharmacology , Virus Replication , Animals , Antiviral Agents/pharmacology , DNA, Viral/biosynthesis , Female , Half-Life , HeLa Cells , Hep G2 Cells , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Humans , Interferon-gamma/genetics , Mice , Mice, Inbred C57BL , Recombinant Proteins
8.
Endocrinology ; 147(6): 2764-72, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16497803

ABSTRACT

In type 2 diabetes, increased endogenous glucose production (EGP) as a result of elevated gluconeogenesis contributes to hyperglycemia. An increase in glycerol gluconeogenesis has led to the suggestion that, in obese human subjects with type 2 diabetes, there may be an increase in the activity of the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase). The aim of this study was to generate transgenic mice that overexpress human liver FBPase in the liver and assess the consequences to whole-body and hepatic glucose metabolism. FBPase transgenic mice had significantly higher levels of transgene expression in the liver and, as a result, had increased FBPase protein and enzyme activity levels in the liver. This resulted in an increase in the rate of glycerol conversion to glucose but not in EGP. The increased expression of FBPase in the liver did not result in any significant differences compared with littermate control mice in insulin or glucose tolerance. Therefore, it appears that, on its own, an increase in FBPase does not lead to impaired regulation of EGP and hence does not affect whole-body glucose metabolism. This suggests that, for EGP to be increased, other factors associated with obesity are also required.


Subject(s)
Fructose-Bisphosphatase/physiology , Gluconeogenesis , Glycerol/metabolism , Liver/enzymology , Animals , Blood Glucose/analysis , Female , Fructose-Bisphosphatase/genetics , Humans , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...