Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Eur J Prev Cardiol ; 31(1): 131-141, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37738461

ABSTRACT

AIMS: The three correlated environmental exposures (air pollution, road traffic noise, and green space) have all been associated with the risk of myocardial infarction (MI). The present study aimed to analyse their independent and cumulative association with MI. METHODS AND RESULTS: In a cohort of all Danes aged 50 or older in the period 2005-17, 5-year time-weighted average exposure to fine particles (PM2.5), ultrafine particles, elemental carbon, nitrogen dioxide (NO2), and road traffic noise at the most and least exposed façades of residence was estimated. Green space around residences was estimated from land use maps. Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence interval (CI), and cumulative risk indices (CRIs) were calculated. All expressed per interquartile range. Models were adjusted for both individual and neighbourhood-level socio-demographic covariates. The cohort included 1 964 702 persons. During follow-up, 71 285 developed MI. In single-exposure models, all exposures were associated with an increased risk of MI. In multi-pollutant analyses, an independent association with risk of MI was observed for PM2.5 (HR: 1.026; 95% CI: 1.002-1.050), noise at most exposed façade (HR: 1.024; 95% CI: 1.012-1.035), and lack of green space within 150 m of residence (HR: 1.018; 95% CI: 1.010-1.027). All three factors contributed significantly to the CRI (1.089; 95% CI: 1.076-1.101). CONCLUSION: In a nationwide cohort study, air pollution, noise, and lack of green space were all independently associated with an increased risk of MI. The air pollutant PM2.5 was closest associated with MI risk.


The present study aimed to analyse their independent and cumulative association of the three correlated environmental exposures: air pollution, road traffic noise, and green space with MI. Air pollution, noise, and lack of green space were all independently associated with MI.Risk estimates for air pollution, noise, and lack of green space were similar, indicating that all may be equally relevant targets for regulatory measures.


Subject(s)
Air Pollutants , Air Pollution , Myocardial Infarction , Humans , Noise/adverse effects , Cohort Studies , Parks, Recreational , Air Pollution/adverse effects , Air Pollutants/adverse effects , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Particulate Matter/adverse effects , Environmental Exposure/adverse effects , Denmark/epidemiology
2.
Phys Chem Chem Phys ; 25(47): 32430-32442, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37991397

ABSTRACT

The role of airborne nanoparticles in atmospheric chemistry and public health is largely controlled by particle size, morphology, surface composition, and coating. Aerosol mass spectrometry provides real-time chemical characterization of submicron atmospheric particles, but analysis of nanoplastics in complex aerosol mixtures such as sea spray is severely limited by challenges associated with separation and ionization of the aerosol matrix. Here we characterize the internal and external mixing state of synthetic sea spray aerosols spiked with 150 nm nanoplastics. Aerosols generated from pneumatic atomization and from a sea spray tank are compared. A humidified tandem differential mobility analyzer is used as a size and hygroscopicity filter, resulting in separation of nanoplastics from sea spray, and an inline high-resolution time-of-flight aerosol mass spectrometer is used to characterize particle composition and ionization efficiency. The separation technique amplified the detection limit of the airborne nanoplastics. A salt coating was found on the nanoplastics with coating thickness increasing exponentially with increasing bulk solution salinity, which was varied from 0 to 40 g kg-1. Relative ionization efficiencies of polystyrene and sea salt chloride were 0.19 and 0.36, respectively. The growth-factor derived hygroscopicity of sea salt was 1.4 at 75% relative humidity. These results underscore the importance of separating airborne nanoplastics from sea salt aerosol for detailed online characterization by aerosol mass spectrometry and characterization of salt coatings as a function of water composition. The surface coating of nanoplastic aerosols by salts can profoundly impact their surface chemistry, water uptake, and humidified particle size distributions in the atmosphere.

3.
Environ Pollut ; 336: 122396, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37595732

ABSTRACT

Ultrafine particles (UFP; particulate matter <0.1 µm in diameter) may be more harmful to human health than larger particles, but epidemiological evidence on their health effects is still limited. In this study, we examined the association between short-term exposure to UFP and mortality and hospital admissions in Copenhagen, Denmark. Daily concentrations of UFP (measured as particle number concentration in a size range 11-700 nm) and meteorological variables were monitored at an urban background station in central Copenhagen during 2002-2018. Daily counts of deaths from all non-accidental causes, as well as deaths and hospital admissions from cardiovascular and respiratory diseases were obtained from Danish registers. Mortality and hospital admissions associated with an interquartile range (IQR) increase in UFP exposure on a concurrent day and up to six preceding days prior to the death or admission were examined in a case-crossover study design. Odds ratios (OR) with 95% confidence intervals (CI) per one IQR increase in UFP were estimated after adjusting for temperature and relative humidity. We observed 140,079 deaths in total, 236,003 respiratory and 342,074 cardiovascular hospital admissions between 2002 and 2018. Hospital admissions due to respiratory and cardiovascular diseases were significantly positively associated with one IQR increase in UFP (OR: 1.04 [95% CI: 1.01, 1.07], lag 0-4, and 1.02 [1.00, 1.04], lag 0-1, respectively). Among the specific causes, the strongest associations were found for chronic obstructive pulmonary disease (COPD) mortality and asthma hospital admissions and two-day means (lag 0-1) of UFP (OR: 1.13 [1.01, 1.26] and 1.08 [1.00, 1.16], respectively, per one IQR increase in UFP). Based on 17 years of UFP monitoring data, we present novel findings showing that short-term exposure to UFP can trigger respiratory and cardiovascular diseases mortality and morbidity in Copenhagen, Denmark. The strongest associations with UFP were observed with COPD mortality and asthma hospital admissions.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Cardiovascular Diseases , Pulmonary Disease, Chronic Obstructive , Humans , Particulate Matter/analysis , Cardiovascular Diseases/epidemiology , Cross-Over Studies , Asthma/epidemiology , Denmark/epidemiology , Hospitals , Air Pollutants/analysis , Particle Size
4.
Environ Res ; 229: 115905, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37086881

ABSTRACT

Air pollution is associated with increased risk of myocardial infarction (MI), but it is unresolved to what extent the association is modified by factors such as socioeconomic status, comorbidities, financial stress, residential green space, or road traffic noise. We formed a cohort of all (n = 1,964,702) Danes, aged 50-85 years, with 65,311 cases of MI during the followed-up period 2005-2017. For all participants we established residential five-year running average exposure to particulate matter <2.5 µm (PM2.5), ultrafine particles (UFP, <0.1 µm), elemental carbon (EC) and nitrogen dioxide (NO2). We evaluated risk in population strata, using Aalen additive hazards models to estimate absolute risk and Cox proportional hazards models to estimate relative risk of MI with 95% confidence intervals (CI). PM2.5 and the other pollutant were associated with MI. Lower education and lower income were associated with higher absolute risks of MI from air pollution, whereas no clear effect modification was apparent for relative risk estimates. For example, 5 µg/m3 higher PM2.5 was associated with HR for MI of 1.16 (95% CI: 1.10-1.22) among those with only mandatory education and 1.13 (95% CI: 1.03-1.24) among those with long education. The corresponding rate differences per 100,000 person years were 243 (95% CI: 216-271) and 358 (95% CI: 338-379), respectively. Higher level of comorbidity was consistently across all four pollutants associated with both higher absolute and relative risk of MI. In conclusion, people with comorbid conditions or of lower SES appeared more vulnerable to long-term exposure to air pollution and more cases of MI may be prevented by focused interventions in these groups.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Myocardial Infarction , Humans , Cohort Studies , Air Pollutants/analysis , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/analysis , Myocardial Infarction/chemically induced , Myocardial Infarction/epidemiology
5.
Nat Commun ; 14(1): 1769, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997509

ABSTRACT

Chlorine radicals are strong atmospheric oxidants known to play an important role in the depletion of surface ozone and the degradation of methane in the Arctic troposphere. Initial oxidation processes of chlorine produce chlorine oxides, and it has been speculated that the final oxidation steps lead to the formation of chloric (HClO3) and perchloric (HClO4) acids, although these two species have not been detected in the atmosphere. Here, we present atmospheric observations of gas-phase HClO3 and HClO4. Significant levels of HClO3 were observed during springtime at Greenland (Villum Research Station), Ny-Ålesund research station and over the central Arctic Ocean, on-board research vessel Polarstern during the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) campaign, with estimated concentrations up to 7 × 106 molecule cm-3. The increase in HClO3, concomitantly with that in HClO4, was linked to the increase in bromine levels. These observations indicated that bromine chemistry enhances the formation of OClO, which is subsequently oxidized into HClO3 and HClO4 by hydroxyl radicals. HClO3 and HClO4 are not photoactive and therefore their loss through heterogeneous uptake on aerosol and snow surfaces can function as a previously missing atmospheric sink for reactive chlorine, thereby reducing the chlorine-driven oxidation capacity in the Arctic boundary layer. Our study reveals additional chlorine species in the atmosphere, providing further insights into atmospheric chlorine cycling in the polar environment.

6.
Front Microbiol ; 13: 909980, 2022.
Article in English | MEDLINE | ID: mdl-35879956

ABSTRACT

The Arctic is a hot spot for climate change with potentially large consequences on a global scale. Aerosols, including bioaerosols, are important players in regulating the heat balance through direct interaction with sunlight and indirectly, through inducing cloud formation. Airborne bacteria are the major bioaerosols with some species producing the most potent ice nucleating compounds known, which are implicated in the formation of ice in clouds. Little is known about the numbers and dynamics of airborne bacteria in the Arctic and even less about their seasonal variability. We collected aerosol samples and wet deposition samples in spring 2015 and summer 2016, at the Villum Research Station in Northeast Greenland. We used amplicon sequencing and qPCR targeting the 16S rRNA genes to assess the quantities and composition of the DNA and cDNA-level bacterial community. We found a clear seasonal variation in the atmospheric bacterial community, which is likely due to variable sources and meteorology. In early spring, the atmospheric bacterial community was dominated by taxa originating from temperate and Subarctic regions and arriving at the sampling site through long-range transport. We observed an efficient washout of the aerosolized bacterial cells during a snowstorm, which was followed by very low concentrations of bacteria in the atmosphere during the consecutive 4 weeks. We suggest that this is because in late spring, the long-range transport ceased, and the local sources which comprised only of ice and snow surfaces were weak resulting in low bacterial concentrations. This was supported by observed changes in the chemical composition of aerosols. In summer, the air bacterial community was confined to local sources such as soil, plant material and melting sea-ice. Aerosolized and deposited Cyanobacteria in spring had a high activity potential, implying their activity in the atmosphere or in surface snow. Overall, we show how the composition of bacterial aerosols in the high Arctic varies on a seasonal scale, identify their potential sources, demonstrate how their community sizes varies in time, investigate their diversity and determine their activity potential during and post Arctic haze.

7.
Nat Geosci ; 15(3): 196-202, 2022.
Article in English | MEDLINE | ID: mdl-35341076

ABSTRACT

Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.

8.
Atmos Environ (1994) ; 269: 118853, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34803467

ABSTRACT

The outbreak of SARS-CoV-2 and subsequent spread of the disease COVID-19 became classified as a pandemic in March of 2020, leading to global safety measures introduced to limit the impact of the virus. This combination of safety measures has become commonly referred to as "lockdown". The associated industry and lifestyle changes led to reductions in the anthropogenic emission of atmospheric pollutants such as black carbon (BC), which is transported from the mid-latitudes into the Arctic during the winter and spring. Measurements of BC and other anthropogenic pollutants are of increasing importance in the Arctic due to the rapid warming observed there in the past few decades. It is believed that BC has a significant role in this warming, and so understanding the Arctic's response to reduced BC emissions at lower latitudes will provide insight into how future changes might mitigate further warming. Reductions in BC have been reported worldwide, and so in this study, the impact of these reductions on BC concentrations at the High Arctic site Villum Research Station was investigated. The effect was examined from March 2020, around when global lockdowns began, to June 2020, when the Arctic haze period ended and BC levels were once again low. Firstly, the Danish Eulerian Hemispheric Model (DEHM) was used to assess this impact on BC concentrations by adjusting global anthropogenic pollution emission inventories to simulate those observed during the lockdown period and comparing the results to a similar model run with standard emission inventories. Secondly, equivalent BC data from an aethalometer at Villum Research Station were analysed, comparing the concentrations during the lockdown period to both aethalometer data from previous years and DEHM results from the lockdown period. It was found that when adjusted DEHM emission inventories were introduced from the 1st of March, the model predicted a reduction in BC concentrations beginning on the 10th of March and reached a 10% reduction by the 1st of April. This reduction fluctuated around 10% until the end of the Arctic haze period. Aethalometer data did not show any significant change from previous years, and no concentration reduction could be concluded from its comparison with DEHM results. This is likely because the predicted reduction of 10% is smaller than both the inter-annual and intra-annual variability of measured BC concentrations at Villum.

9.
Sci Rep ; 11(1): 10008, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33976276

ABSTRACT

Sea spray aerosol (SSA) contributes significantly to natural aerosol particle concentrations globally, in marine areas even dominantly. The potential changes of the omnipresent inorganic fraction of SSA due to atmospheric ageing is largely unexplored. In the atmosphere, SSA may exist as aqueous phase solution droplets or as dried solid or amorphous particles. We demonstrate that ageing of liquid NaCl and artificial sea salt aerosol by exposure to ozone and UV light leads to a substantial decrease in hygroscopicity and cloud activation potential of the dried particles of the same size. The results point towards surface reactions on the liquid aerosols that are more crucial for small particles and the formation of salt structures with water bound within the dried aerosols, termed hydrates. Our findings suggest an increased formation of hydrate forming salts during ageing and the presence of hydrates in dried SSA. Field observations indicate a reduced hygroscopic growth factor of sub-micrometre SSA in the marine atmosphere compared to fresh laboratory generated NaCl or sea salt of the same dry size, which is typically attributed to organic matter or sulphates. Aged inorganic sea salt offers an additional explanation for such a measured reduced hygroscopic growth factor and cloud activation potential.

10.
Environ Sci Process Impacts ; 22(8): 1759-1767, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32697206

ABSTRACT

Magnesium and calcium chloride salts contribute to the global atmospheric aerosol burden via emission of sea spray and mineral dust. Their influence on aerosol hygroscopicity and cloud forming potential is important but uncertain with ambiguities between results reported in the literature. To address this, we have conducted measurements of the hygroscopic growth and critical supersaturation of dried, size selected nano-particles made from aqueous solution droplets of MgCl2 and CaCl2, respectively, and compare experimentally derived values with results from state-of-the-art thermodynamic modelling. It is characteristic of both MgCl2 and CaCl2 salts that they bind water in the form of hydrates under a range of ambient conditions. We discuss how hydrate formation affects the particles' water uptake and provide an expression for hydrate correction factors needed in calculations of hygroscopic growth factors, critical super-saturations, and derived κ values of particles containing hydrate forming salts. We demonstrate the importance of accounting for hydrate forming salts when predicting hygroscopic properties of sea spray aerosol.


Subject(s)
Salts , Water , Aerosols , Dust , Wettability
11.
Environ Sci Technol ; 53(18): 10580-10590, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31094516

ABSTRACT

The radiative balance in the Arctic region is sensitive to in-cloud processes, which principally depend on atmospheric aerosols, including ice nucleating particles (INPs). High temperature INPs (active at ≥-15 °C) are common in the Arctic. While laboratory and limited in situ studies show that the high-temperature active INPs are associated with bioaerosols and biogenic compounds, there is still little quantitative insight into the Arctic biogenic INPs and bioaerosols. We measured concentrations of bioaerosols, bacteria, and biogenic INPs at the Villum Research Station (VRS, Station Nord) in a large number of snow (15) and air (51) samples. We found that INPs active at high subzero temperatures were present both in spring and summer. Air INP concentrations were higher in summer (18 INP m-3 at ≥-10 °C) than in spring (<4 INP m-3 at ≥-10 °C), when abundant INPs were found in snowfall (1.4 INP mL-1 at ≥-10 °C). Also, in summer, a significantly higher number of microbial and bacterial cells were present compared to the spring. A large proportion (60%-100%) of INPs that were active between -6 °C and -20 °C could be deactivated by heating to 100 °C, which was indicative of their predominantly proteinaceous origin. In addition, there was a significant linear regression between the summer air concentrations of INPs active at ≥-10 °C and air concentrations of bacterial-marker-genes (p < 0.0001, R2 = 0.999, n = 6), pointing at bacterial cells as the source of high-temperature active INPs. In conclusion, the majority of INPs was of proteinaceous, and possibly of bacterial, origin and was found in air during summer and in snowfall during springtime.


Subject(s)
Ice , Snow , Aerosols , Arctic Regions , Seasons
12.
Epidemiology ; 28(2): 172-180, 2017 03.
Article in English | MEDLINE | ID: mdl-27922535

ABSTRACT

BACKGROUND: Epidemiologic evidence on the association between short-term exposure to ultrafine particles and mortality is weak, due to the lack of routine measurements of these particles and standardized multicenter studies. We investigated the relationship between ultrafine particles and particulate matter (PM) and daily mortality in eight European urban areas. METHODS: We collected daily data on nonaccidental and cardiorespiratory mortality, particle number concentrations (as proxy for ultrafine particle number concentration), fine and coarse PM, gases and meteorologic parameters in eight urban areas of Finland, Sweden, Denmark, Germany, Italy, Spain, and Greece, between 1999 and 2013. We applied city-specific time-series Poisson regression models and pooled them with random-effects meta-analysis. RESULTS: We estimated a weak, delayed association between particle number concentration and nonaccidental mortality, with mortality increasing by approximately 0.35% per 10,000 particles/cm increases in particle number concentration occurring 5 to 7 days before death. A similar pattern was found for cause-specific mortality. Estimates decreased after adjustment for fine particles (PM2.5) or nitrogen dioxide (NO2). The stronger association found between particle number concentration and mortality in the warmer season (1.14% increase) became null after adjustment for other pollutants. CONCLUSIONS: We found weak evidence of an association between daily ultrafine particles and mortality. Further studies are required with standardized protocols for ultrafine particle data collection in multiple European cities over extended study periods.


Subject(s)
Air Pollution/statistics & numerical data , Cities , Environmental Exposure/statistics & numerical data , Mortality , Nitrogen Dioxide , Particulate Matter , Urban Population/statistics & numerical data , Adolescent , Adult , Aged , Child , Child, Preschool , Denmark , Europe , Female , Finland , Germany , Greece , Humans , Infant , Infant, Newborn , Italy , Male , Middle Aged , Poisson Distribution , Regression Analysis , Spain , Sweden , Time Factors , Young Adult
13.
Eur Respir J ; 48(3): 674-82, 2016 09.
Article in English | MEDLINE | ID: mdl-27338189

ABSTRACT

Epidemiological evidence on the associations between exposure to ultrafine particles (UFP), with aerodynamic electrical mobility diameters <100 nm, and health is limited. We gathered data on UFP from five European cities within 2001-2011 to investigate associations between short-term changes in concentrations and respiratory hospitalisations.We applied city-specific Poisson regression models and combined city-specific estimates to obtain pooled estimates. We evaluated the sensitivity of our findings to co-pollutant adjustment and investigated effect modification patterns by period of the year, age at admission and specific diagnoses.Our results for the whole time period do not support an association between UFP and respiratory hospitalisations, although we found suggestive associations among those 0-14 years old. We nevertheless report consistent adverse effect estimates during the warm period of the year, statistically significant after lag 2 when an increase by 10 000 particles per cm(3) was associated with a 4.27% (95% CI 1.68-6.92%) increase in hospitalisations. These effect estimates were robust to particles' mass or gaseous pollutants adjustment.Considering that our findings during the warm period may reflect better exposure assessment and that the main source of non-soluble UFP in urban areas is traffic, our results call for improved regulation of traffic emissions.


Subject(s)
Air Pollution/adverse effects , Environmental Exposure/adverse effects , Hospitalization/statistics & numerical data , Particulate Matter/adverse effects , Adolescent , Adult , Aged , Child , Child, Preschool , Environmental Monitoring , Europe , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Particle Size , Poisson Distribution , Pulmonary Medicine , Regression Analysis , Temperature , Young Adult
14.
Int J Environ Res Public Health ; 12(2): 1667-86, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25648225

ABSTRACT

To explore associations of exposure to ambient and indoor air particulate and bio-aerosol pollutants with cardiovascular and respiratory disease markers, we utilized seven repeated measurements from 48 elderly subjects participating in a 4-week home air filtration study. Microvascular function (MVF), lung function, blood leukocyte counts, monocyte adhesion molecule expression, C-reactive protein, Clara cell protein (CC16) and surfactant protein-D (SPD) were examined in relation to exposure preceding each measurement. Exposure assessment included 48-h urban background monitoring of PM10, PM2.5 and particle number concentration (PNC), weekly measurements of PM2.5 in living- and bedroom, 24-h measurements of indoor PNC three times, and bio-aerosol components in settled dust on a 2-week basis. Statistically significant inverse associations included: MVF with outdoor PNC; granulocyte counts with PM2.5; CD31 expression with dust fungi; SPD with dust endotoxin. Significant positive associations included: MVF with dust bacteria; monocyte expression of CD11 with PM2.5 in the bedroom and dust bacteria and endotoxin, CD31 expression with dust serine protease; serum CC16 with dust NAGase. Multiple comparisons demand cautious interpretation of results, which suggest that outdoor PNC have adverse effects on MVF, and outdoor and indoor PM2.5 and bio-aerosols are associated with markers of inflammation and lung cell integrity.


Subject(s)
Air Microbiology , Air Pollutants/toxicity , Air Pollution/adverse effects , Cardiovascular Diseases/etiology , Environmental Exposure/adverse effects , Particulate Matter/toxicity , Respiratory Tract Diseases/etiology , Aerosols/analysis , Aerosols/toxicity , Aged , Aged, 80 and over , Air Pollutants/analysis , Air Pollution/analysis , Biomarkers/blood , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Denmark , Environmental Exposure/analysis , Female , Humans , Longitudinal Studies , Male , Middle Aged , Particle Size , Particulate Matter/analysis , Respiratory Tract Diseases/blood , Respiratory Tract Diseases/diagnosis , Urban Health
15.
Environ Int ; 73: 372-81, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25233101

ABSTRACT

This cross-sectional study investigated the relationship between exposure to airborne indoor and outdoor particulate matter (PM) and cardiovascular and respiratory health in a population-based sample of 58 residences in Copenhagen, Denmark. Over a 2-day period indoor particle number concentrations (PNC, 10-300 nm) and PM2.5 (aerodynamic diameter<2.5 µm) were monitored for each of the residences in the living room, and outdoor PNC (10-280 nm), PM2.5 and PM10 (aerodynamic diameter<10 µm) were monitored at an urban background station in Copenhagen. In the morning, after the 2-day monitoring period, we measured microvascular function (MVF) and lung function and collected blood samples for biomarkers related to inflammation, in 78 middle-aged residents. Bacteria, endotoxin and fungi were analyzed in material from electrostatic dust fall collectors placed in the residences for 4 weeks. Data were analyzed using linear regression with the generalized estimating equation approach. Statistically significant associations were found between indoor PNC, dominated by indoor use of candles, and lower lung function, the prediabetic marker HbA1c and systemic inflammatory markers observed as changes in leukocyte differential count and expression of adhesion markers on monocytes, whereas C-reactive protein was significantly associated with indoor PM2.5. The presence of indoor endotoxin was associated with lower lung function and expression of adhesion markers on monocytes. An inverse association between outdoor PNC and MVF was also statistically significant. The study suggests that PNC in the outdoor environment may be associated with decreased MVF, while PNC, mainly driven by candle burning, and bioaerosols in the indoor environment may have a negative effect on lung function and markers of systemic inflammation and diabetes.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Exposure , Particulate Matter/analysis , Adult , Aged , Arteries/physiology , Cross-Sectional Studies , Female , Humans , Inflammation Mediators/metabolism , Male , Middle Aged , Pulmonary Ventilation
16.
Environ Sci Pollut Res Int ; 20(5): 3050-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23054763

ABSTRACT

The particle formation and growth events observed at a semirural background site in Denmark were analyzed based on particle number size distribution data collected during the period from February 2005 to December 2010. The new particle formation (NPF) events have been classified visually in detail according to 3D daily plots in combination with an automatic routine. A clear seasonal variation was found in the way that events occurred more frequently during the warm season from May to September and especially in June. The mean values of the apparent 6 nm particle formation rates, the growth rate and the condensation sink were about 0.36 cm(-3) s(-1), 2.6 nm h(-1), 4.3 × 10(-3) s(-1), respectively. A positive relationship of oxidation capacity (OX = O3 + NO2) of the atmosphere and the appearance of NPF events was found indicating that the oxidation of the atmosphere was linked to the formation of new particles. An analysis of a 3-day backward trajectories revealed that NW air masses from the North Sea were giving the highest probability of NPF events, namely between 20 and 40 %.


Subject(s)
Air Pollutants/analysis , Nitric Oxide/analysis , Nitrous Oxide/analysis , Ozone/analysis , Particle Size , Particulate Matter/analysis , Air Pollutants/chemistry , Denmark , Environmental Monitoring , Luminescent Measurements , Models, Theoretical , Nitric Oxide/chemistry , Nitrous Oxide/chemistry , Ozone/chemistry , Particulate Matter/chemistry , Seasons , Spectrophotometry, Ultraviolet
17.
Part Fibre Toxicol ; 9: 12, 2012 Apr 30.
Article in English | MEDLINE | ID: mdl-22546175

ABSTRACT

BACKGROUND: There is growing evidence that particulate air pollution derived from wood stoves causes acute inflammation in the respiratory system, increases the incidence of asthma and other allergic diseases, and increases respiratory morbidity and mortality. The objective of this study was to evaluate acute respiratory effects from short-term wood smoke exposure in humans. Twenty non-smoking atopic volunteers with normal lung function and without bronchial responsiveness were monitored during three different experimental exposure sessions, aiming at particle concentrations of about 200 µg/m(3), 400 µg/m(3), and clean air as control exposure. A balanced cross-over design was used and participants were randomly allocated to exposure orders. Particles were generated in a wood-burning facility and added to a full-scale climate chamber where the participants were exposed for 3 hours under controlled environmental conditions. Health effects were evaluated in relation to: peak expiratory flow (PEF), forced expiratory volume in the first second (FEV1), and forced vital capacity (FVC). Furthermore, the effects were assessed in relation to changes in nasal patency and from markers of airway inflammation: fractional exhaled nitric oxide (FENO), exhaled breath condensate (EBC) and nasal lavage (NAL) samples were collected before, and at various intervals after exposure. RESULTS: No statistically significant effect of wood smoke exposure was found for lung function, for FENO, for NAL or for the nasal patency. Limited signs of airway inflammation were found in EBC. CONCLUSION: In conclusion, short term exposure with wood smoke at a concentration normally found in a residential area with a high density of burning wood stoves causes only mild inflammatory response.


Subject(s)
Air Pollution, Indoor/adverse effects , Asthma/chemically induced , Inhalation Exposure/adverse effects , Particulate Matter/adverse effects , Smoke/adverse effects , Wood , Adult , Asthma/metabolism , Asthma/pathology , Breath Tests , Female , Humans , Lung/drug effects , Lung/physiopathology , Male , Nasal Lavage Fluid/chemistry , Nasal Obstruction/chemically induced , Nasal Obstruction/physiopathology , Nitric Oxide/metabolism , Particle Size , Respiratory Function Tests
18.
Part Fibre Toxicol ; 9: 7, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22452928

ABSTRACT

BACKGROUND: Exposure to wood smoke is associated with respiratory symptoms, whereas knowledge on systemic effects is limited. We investigated effects on systemic inflammation, oxidative stress and microvascular function (MVF) after controlled wood smoke exposure. METHODS: In a randomised, double-blinded, cross-over study 20 non-smoking atopic subjects were exposed at rest to 14, 220, or 354 µg/m3 of particles from a well-burning modern wood stove for 3 h in a climate controlled chamber with 2 week intervals. We investigated the level of oxidatively damaged DNA, inflammatory markers and adhesion molecules before and 0, 6 and 20 h after exposure. Six h after exposure we measured MVF non-invasively by digital peripheral artery tonometry following arm ischemia. RESULTS: The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09). The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles. CONCLUSIONS: Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.


Subject(s)
Air Pollution, Indoor/adverse effects , DNA Damage , Inflammation/etiology , Microvessels/drug effects , Oxidative Stress , Smoke/adverse effects , Wood , Adult , Air Pollutants/analysis , Air Pollutants/chemistry , Air Pollutants/toxicity , Air Pollution, Indoor/analysis , Antigens, Surface/blood , Antigens, Surface/genetics , Biomarkers/blood , Comet Assay , Cross-Over Studies , Cytokines/blood , Cytokines/genetics , Double-Blind Method , Female , Humans , Hypersensitivity, Immediate/blood , Hypersensitivity, Immediate/immunology , Hypersensitivity, Immediate/physiopathology , Inflammation/immunology , Inhalation Exposure , Male , Microvessels/physiology , Middle Aged , Oxidative Stress/drug effects , Particle Size , Smoke/analysis , Vasodilation/drug effects , Young Adult
19.
Environ Sci Technol ; 43(13): 4659-64, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19673248

ABSTRACT

Traffic is one of the major sources of harmful airborne particles worldwide. To relate exposure to adverse health effects it is important to determine the deposition probability of the inhaled particles in the human respiratory tract. The size-dependent deposition of 12-580 nm particles was measured with a novel setup in 9 healthy subjects breathing by mouth on the windward side of a busy street in Copenhagen, Denmark. The aerosol was characterized both at the curbside and, to obtain the background concentration, at rooftop level. Particle hygroscopicity, a key parameter affecting respiratory tract deposition, was also measured at the same time of exposure. The total deposition fraction of the curbside particles in the range 12-580 nm was 0.60 by number, 0.29 by surface area, and 0.23 by mass. The deposition fractions of the "traffic exhaust" contribution, calculated as the hydrophobic fraction of the curbside particles, was 0.68, 0.35, and 0.28 by number, surface area, and mass, respectively. The deposited amount of traffic exhaust particles was 16 times higher by number and 3 times higher by surface area compared to the deposition of residential biofuel combustion particles investigated previously (equal inhaled mass concentrations). This was because the traffic exhaust particles had both a higher deposition probability and a higher number and surface area concentration per unit mass. To validate the results, the respiratory tract deposition was estimated by using the well-established ICRP model. Predictions were in agreement with experimental results when the effects of particle hygroscopicity were considered in the model.


Subject(s)
Air Pollutants/analysis , Air Pollution , Environmental Monitoring/methods , Inhalation Exposure , Respiratory System/drug effects , Vehicle Emissions , Adult , Aerosols , Aged , Bioelectric Energy Sources , Cities , Denmark , Equipment Design , Female , Humans , Male , Middle Aged
20.
Inhal Toxicol ; 20(10): 923-33, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18668412

ABSTRACT

Smoke from biomass combustion has been identified as a major environmental risk factor associated with adverse health effects globally. Deposition of the smoke particles in the lungs is a crucial factor for toxicological effects, but has not previously been studied experimentally. We investigated the size-dependent respiratory-tract deposition of aerosol particles from wood combustion in humans. Two combustion conditions were studied in a wood pellet burner: efficient ("complete") combustion and low-temperature (incomplete) combustion simulating "wood smoke." The size-dependent deposition fraction of 15-to 680-nm particles was measured for 10 healthy subjects with a novel setup. Both aerosols were extensively characterized with regard to chemical and physical particle properties. The deposition was additionally estimated with the ICRP model, modified for the determined aerosol properties, in order to validate the experiments and allow a generalization of the results. The measured total deposited fraction of particles from both efficient combustion and low-temperature combustion was 0.21-0.24 by number, surface, and mass. The deposition behavior can be explained by the size distributions of the particles and by their ability to grow by water uptake in the lungs, where the relative humidity is close to saturation. The experiments were in basic agreement with the model calculations. Our findings illustrate: (1) that particles from biomass combustion obtain a size in the respiratory tract at which the deposition probability is close to its minimum, (2) that particle water absorption has substantial impact on deposition, and (3) that deposition is markedly influenced by individual factors.


Subject(s)
Aerosols , Biomass , Particle Size , Adult , Air Pollutants , Female , Humans , Incineration , Inhalation Exposure , Male , Respiratory System , Smoke
SELECTION OF CITATIONS
SEARCH DETAIL
...