Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Anim Reprod ; 20(4): e20230029, 2023.
Article in English | MEDLINE | ID: mdl-38148929

ABSTRACT

The risk of pregnancy loss in mares leads to the use of exogenous hormones to help pregnancy maintenance. The objective was to evaluate the proportion of thyroid hormones and steroids in neonates, in the following postpartum period, born to mares fed with synthetic progesterone and to verify the existence of a correlation between the level of progesterone between mother and neonate. Twenty-seven mares and their foals were used. The animals were divided into 5 experimental groups: group 1 (control, without hormonal supplementation), group 2 (random samples fed to 120 days of pregnancy with long-term progesterone), group 3 (mares fed with short-term progesterone as of 280.º day of pregnancy), group 4 (mares fed with long-term progesterone as of 280.º day of pregnancy) and group 5 (mares fed with synthetic hormone [altrenogest] as of 280.º day of pregnancy). The animal's blood collection took place immediately after parturition for the hormonal measurement. The hormones measured in neonates were total T3, free T4, TSH, progesterone and cortisone. In mares, only levels of progesterone. The groups of neonates showed no difference on levels of total T3, free T4, TSH and progesterone. There was no difference on levels of progesterone in mares among the groups. Neonates from groups 4 and 5 had higher and lower cortisone levels, respectively. No neonate showed clinical change. There was also no correlation between levels of progesterone in mares and foals. Thus, hormonal supplementation with long-term progesterone as of 280 days of pregnancy leds to an increase in the neonate's cortisone levels, in the meantime, supplementation with altrenogest as of 280 days of pregnancy caused a decrease on cortisone levels in foals, despite clinical signs have not been observed on these animals.

2.
Anesth Analg ; 122(4): 943-52, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26991612

ABSTRACT

BACKGROUND: It is unclear whether maintaining pulmonary perfusion and ventilation during cardiopulmonary bypass (CPB) reduces pulmonary inflammatory tissue injury compared with standard CPB where the lungs are not ventilated and are minimally perfused. In this study, we tested the hypothesis that maintenance of lung perfusion and ventilation during CPB decreases regional lung inflammation, which may result in less pulmonary structural damage. METHODS: Twenty-seven pigs were randomly allocated into a control group only submitted to sternotomy (n = 8), a standard CPB group (n = 9), or a lung perfusion group (n = 10), in which lung perfusion and ventilation were maintained during CPB. Hemodynamics, gas exchanges, respiratory mechanics, and systemic interleukins (ILs) were determined at baseline (T0), at the end of 90 minutes of CPB (T90), and 180 minutes after CPB (T180). Bronchoalveolar lavage (BAL) ILs were obtained at T0 and T180. Dorsal and ventral left lung tissue samples were examined for optical and electron microscopy. RESULTS: At T90, there was a transient reduction in PaO2/FIO2 in CPB (126 ± 64 mm Hg) compared with the control and lung perfusion groups (296 ± 46 and 244 ± 57 mm Hg; P < 0.001), returning to baseline at T180. Serum ILs were not different among the groups throughout the study, whereas there were significant increases in BAL IL-6 (P < 0.001), IL-8 (P < 0.001), and IL-10 (P < 0.001) in both CPB and lung perfusion groups compared with the control group. Polymorphonuclear counts within the lung tissue were smaller in the lung perfusion group than in the CPB group (P = 0.006). Electron microscopy demonstrated extrusion of surfactant vesicles into the alveolar spaces and thickening of the alveolar septa in the CPB group, whereas alveolar and capillary histoarchitecture was better preserved in the lung perfusion group. CONCLUSIONS: Maintenance of lung perfusion and ventilation during CPB attenuated early histologic signs of pulmonary inflammation and injury compared with standard CPB. Although increased compared with control animals, there were no differences in serum or BAL IL in animals receiving lung ventilation and perfusion during CPB compared with standard CPB.


Subject(s)
Cardiopulmonary Bypass/adverse effects , Lung/pathology , Perfusion/methods , Pneumonia/pathology , Pneumonia/prevention & control , Respiration, Artificial/methods , Animals , Cardiopulmonary Bypass/trends , Male , Perfusion/trends , Respiration, Artificial/trends , Swine
3.
Vet Sci ; 3(1)2016 Feb 19.
Article in English | MEDLINE | ID: mdl-29056717

ABSTRACT

Melanomas are malignant neoplasms originating from melanocytes. They occur in most animal species, but the dog is considered the best animal model for the disease. Melanomas in dogs are most frequently found in the buccal cavity, but the skin, eyes, and digits are other common locations for these neoplasms. The aim of this review is to report etiological, epidemiological, pathological, and molecular aspects of melanomas in dogs. Furthermore, the particular biological behaviors of these tumors in the different body locations are shown. Insights into the therapeutic approaches are described. Surgery, chemotherapy, radiotherapy, immunotherapy, and the outcomes after these treatments are presented. New therapeutic perspectives are also depicted. All efforts are geared toward better characterization and control of malignant melanomas in dogs, for the benefit of these companion animals, and also in an attempt to benefit the treatment of human melanomas.

4.
Clinics (Sao Paulo) ; 70(8): 577-83, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26247671

ABSTRACT

OBJECTIVES: Hypertonic saline has been proposed to modulate the inflammatory cascade in certain experimental conditions, including pulmonary inflammation caused by inhaled gastric contents. The present study aimed to assess the potential anti-inflammatory effects of administering a single intravenous dose of 7.5% hypertonic saline in an experimental model of acute lung injury induced by hydrochloric acid. METHODS: Thirty-two pigs were anesthetized and randomly allocated into the following four groups: Sham, which received anesthesia and were observed; HS, which received intravenous 7.5% hypertonic saline solution (4 ml/kg); acute lung injury, which were subjected to acute lung injury with intratracheal hydrochloric acid; and acute lung injury + hypertonic saline, which were subjected to acute lung injury with hydrochloric acid and treated with hypertonic saline. Hemodynamic and ventilatory parameters were recorded over four hours. Subsequently, bronchoalveolar lavage samples were collected at the end of the observation period to measure cytokine levels using an oxidative burst analysis, and lung tissue was collected for a histological analysis. RESULTS: Hydrochloric acid instillation caused marked changes in respiratory mechanics as well as blood gas and lung parenchyma parameters. Despite the absence of a significant difference between the acute lung injury and acute lung injury + hypertonic saline groups, the acute lung injury animals presented higher neutrophil and tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and IL-8 levels in the bronchoalveolar lavage analysis. The histopathological analysis revealed pulmonary edema, congestion and alveolar collapse in both groups; however, the differences between groups were not significant. Despite the lower cytokine and neutrophil levels observed in the acute lung injury + hypertonic saline group, significant differences were not observed among the treated and non-treated groups. CONCLUSIONS: Hypertonic saline infusion after intratracheal hydrochloric acid instillation does not have an effect on inflammatory biomarkers or respiratory gas exchange.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Saline Solution, Hypertonic/therapeutic use , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents/pharmacology , Blood Cell Count , Cytokines/analysis , Cytokines/drug effects , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Hemodynamics/drug effects , Hydrochloric Acid , Neutrophils/drug effects , Random Allocation , Reproducibility of Results , Saline Solution, Hypertonic/pharmacology , Swine , Time Factors , Treatment Outcome
5.
Clinics ; 70(8): 577-583, 08/2015. tab, graf
Article in English | LILACS | ID: lil-753964

ABSTRACT

OBJECTIVES: Hypertonic saline has been proposed to modulate the inflammatory cascade in certain experimental conditions, including pulmonary inflammation caused by inhaled gastric contents. The present study aimed to assess the potential anti-inflammatory effects of administering a single intravenous dose of 7.5% hypertonic saline in an experimental model of acute lung injury induced by hydrochloric acid. METHODS: Thirty-two pigs were anesthetized and randomly allocated into the following four groups: Sham, which received anesthesia and were observed; HS, which received intravenous 7.5% hypertonic saline solution (4 ml/kg); acute lung injury, which were subjected to acute lung injury with intratracheal hydrochloric acid; and acute lung injury + hypertonic saline, which were subjected to acute lung injury with hydrochloric acid and treated with hypertonic saline. Hemodynamic and ventilatory parameters were recorded over four hours. Subsequently, bronchoalveolar lavage samples were collected at the end of the observation period to measure cytokine levels using an oxidative burst analysis, and lung tissue was collected for a histological analysis. RESULTS: Hydrochloric acid instillation caused marked changes in respiratory mechanics as well as blood gas and lung parenchyma parameters. Despite the absence of a significant difference between the acute lung injury and acute lung injury + hypertonic saline groups, the acute lung injury animals presented higher neutrophil and tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and IL-8 levels in the bronchoalveolar lavage analysis. The histopathological analysis revealed pulmonary edema, congestion and alveolar collapse in both groups; however, the differences between groups were not significant. Despite the lower cytokine and neutrophil levels observed in the acute lung injury + hypertonic saline group, significant differences were not observed among the treated and non-treated groups. ...


Subject(s)
Animals , Female , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Saline Solution, Hypertonic/therapeutic use , Acute Lung Injury/pathology , Anti-Inflammatory Agents/pharmacology , Blood Cell Count , Cytokines/analysis , Cytokines/drug effects , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Hydrochloric Acid , Hemodynamics/drug effects , Neutrophils/drug effects , Random Allocation , Reproducibility of Results , Swine , Saline Solution, Hypertonic/pharmacology , Time Factors , Treatment Outcome
6.
Eur J Pharmacol ; 550(1-3): 8-14, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17027961

ABSTRACT

Peripheral-type benzodiazepine receptors have been found throughout the body, and particularly, in high numbers, in neoplastic tissues such as the ovary, liver, colon, breast, prostate and brain cancer. Peripheral-type benzodiazepine receptor expression has been associated with tumor malignity, and its subcellular localization is important to define its function in tumor cells. We investigated the presence of peripheral-type benzodiazepine receptors in Ehrlich tumor cells, and the in vitro effects of peripheral-type benzodiazepine receptors ligands on tumor cell proliferation. Our results demonstrate the presence of peripheral-type benzodiazepine receptor in the nucleus of Ehrlich tumor cells (85.53+/-12.60%). They also show that diazepam and Ro5-4864 (peripheral-type benzodiazepine receptor agonists) but not clonazepam (a molecule with low affinity for the peripheral-type benzodiazepine receptor) decreased the percentage of tumor cells in G0-G1 phases and increased that of cells in S-G2-M phases. The effects of those agonists were prevented by PK11195 (a peripheral-type benzodiazepine receptor antagonist) that did not produce effects by itself. Altogether, these data suggest that the presence of peripheral-type benzodiazepine receptor within the nucleus of Ehrlich tumor cells is associated with tumor malignity and proliferation capacity.


Subject(s)
Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Receptors, GABA-A/drug effects , Animals , Benzodiazepinones/pharmacology , Carcinoma, Ehrlich Tumor/metabolism , Cell Cycle/drug effects , Cell Division/drug effects , Cell Proliferation/drug effects , Clonazepam/pharmacology , Flow Cytometry , GABA Modulators/pharmacology , Immunohistochemistry , Isoquinolines/pharmacology , Ligands , Mice , Receptors, GABA-A/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...