Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 138(29): 9224-33, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27366919

ABSTRACT

The dynamic nature of intrinsically disordered peptides makes them a challenge to characterize by solution-phase techniques. In order to gain insight into the relation between the disordered state and the environment, we explore the conformational space of the N-terminal 1-5 fragment of bradykinin (BK[1-5](2+)) in the gas phase by combining drift tube ion mobility, cold-ion spectroscopy, and first-principles simulations. The ion-mobility distribution of BK[1-5](2+) consists of two well-separated peaks. We demonstrate that the conformations within the peak with larger cross-section are kinetically trapped, while the more compact peak contains low-energy structures. This is a result of cis-trans isomerization of the two prolyl-peptide bonds in BK[1-5](2+). Density-functional theory calculations reveal that the compact structures have two very different geometries with cis-trans and trans-cis backbone conformations. Using the experimental CCSs to guide the conformational search, we find that the kinetically trapped species have a trans-trans configuration. This is consistent with NMR measurements performed in a solution, which show that 82% of the molecules adopt a trans-trans configuration and behave as a random coil.


Subject(s)
Bradykinin/chemistry , Gases/chemistry , Peptide Fragments/chemistry , Models, Molecular , Protein Conformation , Solutions , Stereoisomerism , Thermodynamics
2.
J Chem Phys ; 143(10): 104313, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26374041

ABSTRACT

The effects of tagging protonated glycine with either He or between 1 and 14 H2 molecules on the infrared photodissociation spectra and the ion structure were investigated. Differences in the IR spectra with either a single He atom or H2 molecule attached indicate that even a single H2 molecule can affect the frequencies of some vibrational bands of this simple ion. The protonation site is the preferred location of the tag with He and with up to two H2 molecules, but evidence for H2 attachment to the hydrogen atom of the uncharged carboxylic acid is observed for ions tagged with three or more H2 molecules. This results in a 55 cm(-1) red shift in the carboxylic acid OH stretch, and evidence for some structural isomers where the hydrogen bond between the protonated nitrogen and the carbonyl oxygen is partially broken; as a result H2 molecules attached to this site are observed. These results are supported by theory, which indicates that H2 molecules can effectively break this weak hydrogen bond with three or more H2 molecules. These results indicate that large spectral shifts as a result of H2 molecules attaching to sites remote from the charge can occur and affect stretching frequencies as a result of charge transfer, and that tagging with multiple H2 molecules can change the structure of the ion itself.


Subject(s)
Glycine/chemistry , Hydrogen/chemistry , Protons , Helium/chemistry , Hydrogen Bonding , Mass Spectrometry , Spectrophotometry, Infrared
3.
J Am Soc Mass Spectrom ; 26(9): 1444-54, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26091889

ABSTRACT

We report the first results from a new instrument capable of acquiring infrared spectra of mobility-selected ions. This demonstration involves using ion mobility to first separate the protonated peptide Gly-Pro-Gly-Gly (GPGG) into two conformational families with collisional cross-sections of 93.8 and 96.8 Å(2). After separation, each family is independently analyzed by acquiring the infrared predissociation spectrum of the H(2)-tagged molecules. The ion mobility and spectroscopic data combined with density functional theory (DFT) based molecular dynamics simulations confirm the presence of one major conformer per family, which arises from cis/trans isomerization about the proline residue. We induce isomerization between the two conformers by using collisional activation in the drift tube and monitor the evolution of the ion distribution with ion mobility and infrared spectroscopy. While the cis-proline species is the preferred gas-phase structure, its relative population is smaller than that of the trans-proline species in the initial ion mobility drift distribution. This suggests that a portion of the trans-proline ion population is kinetically trapped as a higher energy conformer and may retain structural elements from solution.


Subject(s)
Oligopeptides/chemistry , Proline/analogs & derivatives , Spectrophotometry, Infrared/methods , Equipment Design , Proline/chemistry , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...