Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Physiol Endocrinol Metab ; 326(2): E149-E165, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38117267

ABSTRACT

Macrophages regulate metabolic homeostasis in health and disease. Macrophage colony-stimulating factor (CSF1)-dependent macrophages contribute to homeostatic control of the size of the liver. This study aimed to determine the systemic metabolic consequences of elevating circulating CSF1. Acute administration of a CSF1-Fc fusion protein to mice led to monocytosis, increased resident tissue macrophages in the liver and all major organs, and liver growth. These effects were associated with increased hepatic glucose uptake and extensive mobilization of body fat. The impacts of CSF1 on macrophage abundance, liver size, and body composition were rapidly reversed to restore homeostasis. The effects of CSF1 on metabolism were independent of several known endocrine regulators and did not impact the physiological fasting response. Analysis using implantable telemetry in metabolic cages revealed progressively reduced body temperature and physical activity with no change in diurnal food intake. These results demonstrate the existence of a dynamic equilibrium between CSF1, the mononuclear phagocyte system, and control of liver-to-body weight ratio, which in turn controls systemic metabolic homeostasis. This novel macrophage regulatory axis has the potential to promote fat mobilization, without changes in appetence, which may have novel implications for managing metabolic syndrome.NEW & NOTEWORTHY CSF1 administration expands tissue macrophages, which transforms systemic metabolism. CSF1 drives fat mobilization and glucose uptake to support liver growth. The effects of CSF1 are independent of normal hormonal metabolic regulation. The effects of CSF1 are rapidly reversible, restoring homeostatic body composition. CSF1-dependent macrophages and liver size are coupled in a dynamic equilibrium.


Subject(s)
Macrophage Colony-Stimulating Factor , Macrophages , Animals , Mice , Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Carbohydrate Metabolism , Glucose/metabolism , Lipids
2.
Trop Med Infect Dis ; 7(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35878125

ABSTRACT

The elimination of lymphatic filariasis (LF) is achieved through repeated mass drug administration (MDA) of anti-filarial medications, which interrupts transmission and prevents new infections. Accurate transmission assessments are critical to deciding when to stop MDA. Current methods for evaluating transmission may be insufficiently sensitive, resulting in post-MDA resurgence. We, therefore, evaluated potential diagnostic testing scenarios for post-MDA surveillance. Data were used from two surveys (a household cluster and a cohort) conducted in an area of Mandalay Region, Myanmar, with ongoing transmission following several rounds of MDA. First, age- and sex-adjusted seroprevalence were estimated for the area using the household survey. Next, three Bayesian networks were built from the combined datasets to compare antigens by immunochromatic testing (ICT) and/or Og4C3 enzyme-linked immunosorbent assay (ELISA) and antibody (Ab) detection methods (Wb123 or Bm14 Ab ELISA). The networks were checked for validity and then used to compare diagnostic testing scenarios. The adjusted prevalence from the household survey for antigen, Wb123 Ab and Bm14 Ab were 4.4% (95% CI 2.6-7.3%), 8.7% (5.96-12.5%) and 20.8% (16.0-26.6%), respectively. For the three networks, the True Skill Statistic and Area Under the Receiver Operating Characteristic Curve for antigen, Wb123 and Bm14 Ab were 0.79, 0.68 and 0.55; and 0.97, 0.92 and 0.80, respectively. In the Bayesian network analysis, a positive case was defined as testing positive to one or more infection markers. A missed result was therefore the probability of a positive case having a negative test result to an alternate marker. The probability of a positive case prior to any testing scenario was 17.4%, 16.8% and 26.6% for antigen, Wb123 Ab and Bm14 Ab, respectively. In the antigen-only testing scenario, the probability of a missed positive LF result was 5.2% for Wb123 and 15.6% for Bm14 Ab. The combination of antigen plus Bm14 Ab testing reduced the probability of missing a positive LF case as measured by Wb123 Ab to 0.88%. The combination of antigen plus Wb123 Ab was less successful and yielded an 11.5% probability of a missed positive result by Bm14 Ab testing. Across scenarios, there was a greater discordance between Bm14 and both antigen and Wb123 Ab in the 1-10 age group compared to older ages. These findings suggest that the addition of Bm14 Ab improves the sensitivity of LF testing for current or past infection. The combination of antigen plus Bm14 Ab should therefore be considered for inclusion in post-MDA surveillance to improve the sensitivity of transmission surveys and prevent the premature cessation of MDA.

3.
Methods Mol Biol ; 2184: 215-224, 2020.
Article in English | MEDLINE | ID: mdl-32808228

ABSTRACT

The analysis of mitochondrial dynamics within immune cells allows us to understand how fundamental metabolism influences immune cell functions, and how dysregulated immunometabolic processes impact biology and disease pathogenesis. For example, during infections, mitochondrial fission and fusion coincide with effector and memory T-cell differentiation, respectively, resulting in metabolic reprogramming. As frozen cells are generally not optimal for immunometabolic analyses, and given the logistic difficulties of analysis on cells within a few hours of blood collection, we have optimized and validated a simple cryopreservation protocol for peripheral blood mononuclear cells, yielding >95% cellular viability, as well as preserved metabolic and immunologic properties. Combining fluorescent dyes with cell surface antibodies, we demonstrate how to analyze mitochondrial density, membrane potential, and reactive oxygen species production in CD4 and CD8 T cells from cryopreserved clinical samples.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Leukocytes, Mononuclear/physiology , Mitochondria/physiology , Mitochondrial Dynamics/physiology , Antibodies/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Survival/physiology , Cryopreservation/methods , Humans , Leukocytes, Mononuclear/metabolism , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
4.
Front Immunol ; 9: 900, 2018.
Article in English | MEDLINE | ID: mdl-29867928

ABSTRACT

Untreated HIV infection is associated with progressive CD4+ T cell depletion, which is generally recovered with combination antiretroviral therapy (cART). However, a significant proportion of cART-treated individuals have poor CD4+ T cell reconstitution. We investigated associations between HIV disease progression and CD4+ T cell glucose transporter-1 (Glut1) expression. We also investigated the association between these variables and specific single nucleotide polymorphisms (SNPs) within the Glut1 regulatory gene AKT (rs1130214, rs2494732, rs1130233, and rs3730358) and in the Glut1-expressing gene SLC2A1 (rs1385129 and rs841853) and antisense RNA 1 region SLC2A1-AS1 (rs710218). High CD4+Glut1+ T cell percentage is associated with rapid CD4+ T cell decline in HIV-positive treatment-naïve individuals and poor T cell recovery in HIV-positive individuals on cART. Evidence suggests that poor CD4+ T cell recovery in treated HIV-positive individuals is linked to the homozygous genotype (GG) associated with SLC2A1 SNP rs1385129 when compared to those with a recessive allele (GA/AA) (odds ratio = 4.67; P = 0.04). Furthermore, poor response to therapy is less likely among Australian participants when compared against American participants (odds ratio: 0.12; P = 0.01) despite there being no difference in prevalence of a specific genotype for any of the SNPs analyzed between nationalities. Finally, CD4+Glut1+ T cell percentage is elevated among those with a homozygous dominant genotype for SNPs rs1385129 (GG) and rs710218 (AA) when compared to those with a recessive allele (GA/AA and AT/TT respectively) (P < 0.04). The heterozygous genotype associated with AKT SNP 1130214 (GT) had a higher CD4+Glut1+ T cell percentage when compared to the dominant homozygous genotype (GG) (P = 0.0068). The frequency of circulating CD4+Glut1+ T cells and the rs1385129 SLC2A1 SNP may predict the rate of HIV disease progression and CD4+ T cell recovery in untreated and treated infection, respectively.


Subject(s)
Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , Glucose Transporter Type 1/genetics , HIV Infections/drug therapy , Adult , CD4 Lymphocyte Count , Cohort Studies , Disease Progression , Glucose Transporter Type 1/immunology , HIV Infections/blood , HIV Infections/genetics , HIV Infections/immunology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-akt/genetics , Young Adult
5.
PLoS One ; 12(8): e0183931, 2017.
Article in English | MEDLINE | ID: mdl-28854263

ABSTRACT

Metabolism plays a fundamental role in supporting the growth, proliferation and effector functions of T cells. We investigated the impact of HIV infection on key processes that regulate glucose uptake and mitochondrial biogenesis in subpopulations of CD4+ and CD8+ T cells from 18 virologically-suppressed HIV-positive individuals on combination antiretroviral therapy (cART; median CD4+ cell count: 728 cells/µl) and 13 HIV seronegative controls. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production were also analysed in total CD4+ and CD8+ T cells. Among HIV+/cART individuals, expression of glucose transporter (Glut1) and mitochondrial density were highest within central memory and naïve CD4+ T cells, and lowest among effector memory and transitional memory T cells, with similar trends in HIV-negative controls. Compared to HIV-negative controls, there was a trend towards higher percentage of circulating CD4+Glut1+ T cells in HIV+/cART participants. There were no significant differences in mitochondrial dynamics between subject groups. Glut1 expression was positively correlated with mitochondrial density and MMP in total CD4+ T cells, while MMP was also positively correlated with ROS production in both CD4+ and CD8+ T cells. Our study characterizes specific metabolic features of CD4+ and CD8+ T cells in HIV-negative and HIV+/cART individuals and will invite future studies to explore the immunometabolic consequences of HIV infection.


Subject(s)
Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , HIV Infections/drug therapy , Mitochondrial Dynamics/drug effects , Adult , Antiretroviral Therapy, Highly Active/methods , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Female , Glucose/metabolism , Glucose Transporter Type 1/metabolism , HIV/drug effects , HIV Infections/metabolism , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Middle Aged , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...