Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 10(1): 9139, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32499563

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is a lethal muscle disorder, caused by mutations in the DMD gene and affects approximately 1:5000-6000 male births. In this report, we identified dysregulation of members of the Dlk1-Dio3 miRNA cluster in muscle biopsies of the GRMD dog model. Of these, we selected miR-379 for a detailed investigation because its expression is high in the muscle, and is known to be responsive to glucocorticoid, a class of anti-inflammatory drugs commonly used in DMD patients. Bioinformatics analysis predicts that miR-379 targets EIF4G2, a translational factor, which is involved in the control of mitochondrial metabolic maturation. We confirmed in myoblasts that EIF4G2 is a direct target of miR-379, and identified the DAPIT mitochondrial protein as a translational target of EIF4G2. Knocking down DAPIT in skeletal myotubes resulted in reduced ATP synthesis and myogenic differentiation. We also demonstrated that this pathway is GC-responsive since treating mice with dexamethasone resulted in reduced muscle expression of miR-379 and increased expression of EIF4G2 and DAPIT. Furthermore, miR-379 seric level, which is also elevated in the plasma of DMD patients in comparison with age-matched controls, is reduced by GC treatment. Thus, this newly identified pathway may link GC treatment to a mitochondrial response in DMD.


Subject(s)
Glucocorticoids/therapeutic use , MicroRNAs/metabolism , Mitochondria/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Dexamethasone/pharmacology , Disease Models, Animal , Dogs , Eukaryotic Initiation Factor-4G/chemistry , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Gene Expression Regulation/drug effects , Humans , Mice , MicroRNAs/chemistry , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Myoblasts, Skeletal/metabolism , RNA Interference , RNA, Small Interfering/metabolism
2.
Experientia ; 33(12): 1632-4, 1977 Dec 15.
Article in English | MEDLINE | ID: mdl-590459

ABSTRACT

Aldosterone injected i.m. decreased the release of renomedullary PGEs and the index (urinary Na/K ratio) in conscious normotensive intact and adrenalectomized rats. Coadministration of spironolactone increased the release of PGEs as well as the index (urinary Na/K ratio). The effect of spironolactone was partly inhibited by aspirin injected in a ratio 5:1 (aspirin:spironolactone), and effect which could be reversed by the infusion of a synthetic prostaglandin (PGA2) in a subhypotensive dose.


Subject(s)
Aldosterone/pharmacology , Aspirin/pharmacology , Prostaglandins A, Synthetic/pharmacology , Prostaglandins E/metabolism , Spironolactone/pharmacology , Adrenalectomy , Animals , Male , Potassium/urine , Rats , Sodium/urine
SELECTION OF CITATIONS
SEARCH DETAIL