ABSTRACT
Polymer-based membranes containing nanocellulose and natural macromolecules have potential to treat water, however few works have associated the changes in chemical and morphological membrane's features with their performance as adsorbent. Herein, a new green composite based on nanocellulose (NC) and alkylated tannic acid (ATA) and cross-linked with proanthocyanidin was produced and incorporated into polyacrylonitrile (PAN) membranes to eliminate propranolol (PRO) from water. Characterizations revealed that the increasing of NC-ATA content reduced the pore size of the membrane's upper surface and made the finger like structure of the sublayer disappear, due to the formation of hydrophilic domains of NC/ATA which speeds up the external solidification step. The presence of NC-ATA reduced the hydrophilicity, from a water contact angle of 3.65° to 16.51°, the membrane roughness, from 223.5 to 52.0 nm, and the zeta potential from -25.35 to -55.20 mV, improving its features to be a suitable adsorbent of organic molecules. The membranes proved to be excellent green adsorbent, tridimensional, and easy to remove after use, and qmax for PRO was 303 mg·g-1. The adsorption mechanism indicates that H-bonds, ion exchange, and π-π play important role in adsorption. NC-ATA@PAN kept high removal efficiencies after four cycles, evidencing the potential for water purification.
Subject(s)
Polyphenols , Proanthocyanidins , Water Pollutants, Chemical , Propranolol , Water , Adsorption , Water Pollutants, Chemical/chemistryABSTRACT
Hydrophobic chitosan aerogels are promising adsorbents for immiscible contaminants such as oils and organic solvents. However, few studies have reported the application of hydrophobic aerogels as adsorbent for organic contaminants dissolved in water. Herein, novel highly hydrophobic chitosan (CS) beads containing cellulose nanocrystals (CNC) and hydrophobized tannic acid (HTA) composite were prepared with different CS and CNC-HTA content to achieve an optimized adsorbent to remove emerging contaminants from water in batch and fixed-bed assays. The CS@CNC-HTA beads properties were assessed by FTIR, XRD, SEM, XPS, Micro-CT, WCA, and zeta potential. Supramolecular interactions and physical interlacements between CS and CNC-HTA enabled the formation of CS@CNC-HTA beads with high porosity (98.6%), great volume of open pore space (10.16 mm3) and hydrophobicity (121.8°). The 1:1 CS@CNC-HTA beads showed the best performance for removing the pharmaceutical sildenafil citrate, the basic blue 26 dye, and the surfactant cetylpyridinium chloride, reaching adsorption capacities of 86 (73%), 375 (84%), and 390 (90%) mg.g-1, respectively. The 1:1 CS@CNC-HTA beads efficiently removed sildenafil citrate, basic blue 26 and cetylpyridinium chloride in fixed-bed experiments with exhaustion times of 890, 300, and 470 min, respectively. Theoretical calculations and adsorption assays indicate that the main attractive interactions are pyridinium-π, π-π, electrostatic and hydrophobic.
Subject(s)
Chitosan , Water Pollutants, Chemical , Water , Chitosan/chemistry , Adsorption , Cetylpyridinium , Sildenafil Citrate , Water Pollutants, Chemical/analysis , Cellulose/chemistryABSTRACT
A green magnetic composite mCS/GO was synthesized using water hyacinth extract, as a reducing agent, and proanthocyanidin, as a crosslinking agent, for the adsorption of naphthalene from effluents. The green composite was evaluated using different characterization techniques to determine its thermal (TG/DTG), structural (BET, XPS and FTIR), crystallographic (XRD), and textural (SEM) properties in natura and post-adsorption. The results obtained through a central composite design (CCD) experiment indicated that the initial concentration of NAP and the adsorbent dosage are significant for the adsorption capacity. The adsorption assays indicated that physisorption, through π-π and hydrophobic interactions, were the main mechanism involved in the NAP adsorption. However, the adjustment to the PSO and Freundlich models, obtained through kinetic and equilibrium studies, indicated that chemisorption also influences the adsorptive process. The thermodynamic study indicated physisorption as the mechanism responsible for the NAP adsorption. Also, the adsorbent has high affinity for the adsorbate and the process is spontaneous and endothermic. The maximum adsorption capacity (qmax) of the green mCS/GO was 334.37 mg g-1 at 20 °C. Furthermore, the green mCS/GO was effectively regenerated with methanol and reused for five consecutive cycles, the percentage of NAP recovery went from approximately 91 to 75% after the fifth cycle. The green composite was also applied in the adsorption of NAP from river water samples, aiming to evaluate the feasibility of the method in real applications. The adsorption efficiency was approximately 70%. From what we know, this it is the first time that a green adsorbent was recycled after the polycyclic aromatic hydrocarbon (PAHs) adsorption process.
Subject(s)
Chitosan , Graphite , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Adsorption , Chitosan/chemistry , Wastewater , Naphthalenes , Graphite/chemistry , Magnetic Phenomena , KineticsABSTRACT
Photocatalysts supported in magnetic nanocomposites for application in environmental remediation processes have been evaluated for removing contaminants due to easy recovery and low toxicity to the ecosystem. In this work, copper oxide (CuO) nanoparticles with photocatalytic properties were decorated on magnetic support constituted by hydroxyapatite (HAP) and ferrite to achieve efficiency in contaminated water remediation under visible light irradiation. First, nanomaterials were obtained by precipitation route, allowing fast and straightforward synthesis. Then, CuO nanoparticles with 6 nm diameter were efficiently decorated on magnetic support (25 nm), showing a high ability to absorb visible light irradiation (bandgap) to promote electronic transition and charge separation. Under visible irradiation, CuO promotes the H2O2 reduction in the conduction band (BC) to form hydroxyl radicals (â¢OH), which are responsible for rhodamine B (RhB) dye degradation (> 90% in 60 min). Magnetic hysteresis assays confirmed the magnetic properties of HAP/ferrite support, which enabled the recovery and reuse of the magnetic photocatalyst efficiently up to 3 cycles. Due to low Cu2+ leaching after the photocatalytic application stage, cytotoxicity assay for the Allium cepa seeds did not exhibit abnormal cells other than those commonly found. Furthermore, the CuO-decorated nanoparticles showed bactericidal activity against S. aureus (Gram-positive) and E. coli (Gram-negative) microorganisms, being more significant for the first one. Thus, the developed nanocomposite of CuO nanoparticles decorated on the magnetic support surface showed to be a complete system for water remediation, acting in contaminant degradation under visible light irradiation and bactericidal control with environmentally friendly characteristics.Graphical abstract CuO nanoparticles decorated on hydroxyapatite/ferrite magnetic support acting as a photocatalytic and bactericidal system.
Subject(s)
Anti-Infective Agents , Nanoparticles , Catalysis , Copper , Durapatite , Ecosystem , Escherichia coli , Ferric Compounds , Hydrogen Peroxide , Light , Staphylococcus aureus , WaterABSTRACT
X-ray Absorption Fine Structure (XAFS) spectroscopy has been widely used to characterize the short-range order of glassy materials since the theoretical basis was established 45 years ago. Soon after the technique became accessible, mainly due to the existence of Synchrotron laboratories, a wide range of glassy materials was characterized. Silicate glasses have been the most studied because they are easy to prepare, they have commercial value and are similar to natural glasses, but borate, germanate, phosphate, tellurite and other less frequent oxide glasses have also been studied. In this manuscript, we review reported advances in the structural characterization of oxide-based glasses using this technique. A focus is on structural characterization of transition metal ions, especially Ti, Fe, and Ni, and their role in different properties of synthetic oxide-based glasses, as well as their important function in the formation of natural glasses and magmas, and in nucleation and crystallization. We also give some examples of XAFS applications for structural characterization of glasses submitted to high pressure, glasses used to store radioactive waste and medieval glasses. This updated, comprehensive review will likely serve as a useful guide to clarify the details of the short-range structure of oxide glasses.
ABSTRACT
A microwave-assisted hydrothermal method was applied to synthesize BaZr1-xHfxO3, (BZHO) solid solutions at a low temperature, 140 °C, and relatively short times, 160 min. The detailed features of the crystal structure, at both short and long ranges, as well as the crystal chemistry doping process, are extensively analysed. X-ray diffraction measurements and Raman spectroscopy have been used to confirm that pure and Hf-doped BZO materials present a cubic structure. Extended X-ray absorption fine structure (EXAFS) spectra indicate that Hf(4+) ions have replaced the Zr(4+) ions on the 6-fold coordination and a subsequent change on the Ba(2+) 12-fold coordination can be sensed. X-ray absorption near-edge structure (XANES) spectroscopy measurements reveal a local symmetry breaking process, associated to overlap of the 4d-2p and 5d-2p orbitals of Zr-O and Hf-O bonds, respectively. Field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HRTEM) show the mesocrystalline nature of self-assembled BZHO nanoparticles under a dodecahedron shape. In addition first principle calculations were performed to complement the experimental data. The analysis of the band structures and density of states of the undoped BZO and doped BZHO host lattice allow deep insight into the main electronic features. The theoretical results help us to find a correlation between simulated and experimental Raman modes and allow a more substantial interpretation of crystal structure.