Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 21(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799914

ABSTRACT

Detecting and monitoring air-polluting gases such as carbon monoxide (CO), nitrogen oxides (NOx), and sulfur oxides (SOx) are critical, as these gases are toxic and harm the ecosystem and the human health. Therefore, it is necessary to design high-performance gas sensors for toxic gas detection. In this sense, graphene-based materials are promising for use as toxic gas sensors. In addition to experimental investigations, first-principle methods have enabled graphene-based sensor design to progress by leaps and bounds. This review presents a detailed analysis of graphene-based toxic gas sensors by using first-principle methods. The modifications made to graphene, such as decorated, defective, and doped to improve the detection of NOx, SOx, and CO toxic gases are revised and analyzed. In general, graphene decorated with transition metals, defective graphene, and doped graphene have a higher sensibility toward the toxic gases than pristine graphene. This review shows the relevance of using first-principle studies for the design of novel and efficient toxic gas sensors. The theoretical results obtained to date can greatly help experimental groups to design novel and efficient graphene-based toxic gas sensors.

2.
J Nematol ; 52: 1-8, 2020.
Article in English | MEDLINE | ID: mdl-32726069

ABSTRACT

Phyllophaga spp. are a complex of edaphic insect pests that are present in the corn crops (Zea mays) in México, which are usually controlled with increasing dosages of broad-spectrum chemical insecticides. Several entomopathogenic nematode species can produce acceptable control levels of these larvae. However, the synergistic interaction between fungi and entomopathogenic nematodes (EPN) could improve the control of this insect. This study investigates the mortality of larvae of Phyllophaga vetula by the effect of the separate or combined application of the fungus Metarhizium anisopliae M1cog strain (Ma) and the nematodes Steinernema carpocapsae All strain (Sc) or Steinernema glaseri NJ-43 strain (Sg). In laboratory, dosages of 1 × 106 or 1 × 108 spores/larva and 250 infective juveniles were applied on medium or large size P. vetula larvae contained in vials with sterilized agricultural soil as the assay arena. The separate application of Ma did not kill any larvae, but Sg and Sc killed 40 and 80% of the larvae, respectively. However, the Ma and Sc combination had an important antagonistic interaction that decreased the mortality to 40%, but the combination Ma and Sg had a slight additive interaction that increased the mortality to 47%. The most determining factor in larvae mortality was the nematode used, with Sg as the species with best performance in 6 of the 12 treatments evaluated and with a maximum effectivity of 80% on medium-size larvae if combined with a low dosage of Ma. The combined application of an entomopathogenic fungus and EPN showed no consistent effects on the mortality percentage of P. vetula, mostly because the fungus was not isolated from Phyllophaga larvae.Phyllophaga spp. are a complex of edaphic insect pests that are present in the corn crops (Zea mays) in México, which are usually controlled with increasing dosages of broad-spectrum chemical insecticides. Several entomopathogenic nematode species can produce acceptable control levels of these larvae. However, the synergistic interaction between fungi and entomopathogenic nematodes (EPN) could improve the control of this insect. This study investigates the mortality of larvae of Phyllophaga vetula by the effect of the separate or combined application of the fungus Metarhizium anisopliae M1cog strain (Ma) and the nematodes Steinernema carpocapsae All strain (Sc) or Steinernema glaseri NJ-43 strain (Sg). In laboratory, dosages of 1 × 106 or 1 × 108 spores/larva and 250 infective juveniles were applied on medium or large size P. vetula larvae contained in vials with sterilized agricultural soil as the assay arena. The separate application of Ma did not kill any larvae, but Sg and Sc killed 40 and 80% of the larvae, respectively. However, the Ma and Sc combination had an important antagonistic interaction that decreased the mortality to 40%, but the combination Ma and Sg had a slight additive interaction that increased the mortality to 47%. The most determining factor in larvae mortality was the nematode used, with Sg as the species with best performance in 6 of the 12 treatments evaluated and with a maximum effectivity of 80% on medium-size larvae if combined with a low dosage of Ma. The combined application of an entomopathogenic fungus and EPN showed no consistent effects on the mortality percentage of P. vetula, mostly because the fungus was not isolated from Phyllophaga larvae.

SELECTION OF CITATIONS
SEARCH DETAIL