Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Neurosci ; 22(12): 877-893, 2019 Dec.
Article in English | MEDLINE | ID: mdl-29697017

ABSTRACT

Objectives: The biological mechanisms linking diet-related obesity and depression remain unclear. Therefore, we examined the impact of high-fat diet (HFD) on murine behaviour, intestinal microbiome, brain metabolome, neuropeptide Y (NPY) expression, and dipeptidyl peptidase-4 (DPP-4) activity.Methods: Male C57Bl/6J mice were fed an HFD (60 kJ% from fat) or control diet (12 kJ% from fat) for 8 weeks, followed by behavioural phenotyping. Caecal microbiome was analysed by 16S rDNA sequencing, brain metabolome by 1H nuclear magnetic resonance, NPY expression by PCR and immunoassay, and dipeptidyl peptidase-4 (DPP-4) activity by enzymatic assay. The effect of a 4-week treatment with imipramine (7 mg/kg/day) and the DPP-4 inhibitor sitagliptin (50 mg/kg/day) on HFD-induced behavioural changes was also tested.Results: HFD led to a depression-like phenotype as revealed by reduced sociability and sucrose preference. In the caecum, HFD diminished the relative abundance of Bacteroidetes and increased the relative abundance of Firmicutes and Cyanobacteria. In the brain, HFD modified the metabolome of prefrontal cortex and striatum, changing the relative concentrations of molecules involved in energy metabolism (e.g. lactate) and neuronal signalling (e.g. γ-aminobutyric acid). The expression of NPY in hypothalamus and hippocampus was decreased by HFD, whereas plasma NPY and DPP-4-like activity were increased. The HFD-induced anhedonia remained unaltered by imipramine and sitagliptin.Discussion: The depression-like behaviour induced by prolonged HFD in mice is associated with distinct alterations of intestinal microbiome, brain metabolome, NPY system, and DPP-4-like activity. Importantly, the HFD-evoked behavioural disturbance remains unaltered by DPP-4 inhibition and antidepressant treatment with imipramine.


Subject(s)
Brain/metabolism , Depression/etiology , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Metabolome/physiology , Neuropeptide Y/metabolism , Animals , Behavior, Animal/physiology , Corpus Striatum/metabolism , Gene Expression , Male , Mice , Mice, Inbred C57BL , Neuropeptide Y/blood , Neuropeptide Y/genetics , Prefrontal Cortex/metabolism , Weight Gain
2.
Hepatology ; 68(3): 933-948, 2018 09.
Article in English | MEDLINE | ID: mdl-29171037

ABSTRACT

Intratumor heterogeneity is increasingly recognized as a major factor impacting diagnosis and personalized treatment of cancer. We characterized stochastic phenotype switching as a mechanism contributing to intratumor heterogeneity and malignant potential of liver cancer. Clonal analysis of primary tumor cell cultures of a human sarcomatoid cholangiocarcinoma identified different types of self-propagating subclones characterized by stable (keratin-7-positive or keratin-7-negative) phenotypes and an unstable phenotype consisting of mixtures of keratin-7-positive and keratin-7-negative cells, which lack stem cell features but may reversibly switch their phenotypes. Transcriptome sequencing and immunohistochemical studies with the markers Zeb1 and CD146/MCAM demonstrated that switching between phenotypes is linked to changes in gene expression related but not identical to epithelial-mesenchymal transition. Stochastic phenotype switching occurred during mitosis and did not correlate with changes in DNA methylation. Xenotransplantation assays with different cellular subclones demonstrated increased tumorigenicity of cells showing phenotype switching, resulting in tumors morphologically resembling the invasive component of primary tumor and metastasis. CONCLUSION: Our data demonstrate that stochastic phenotype switching contributes to intratumor heterogeneity and that cells with a switching phenotype have increased malignant potential. (Hepatology 2017).


Subject(s)
Cholangiocarcinoma/genetics , Genes, Switch , Genetic Heterogeneity , Liver Neoplasms/genetics , Humans , Phenotype , Stochastic Processes , Tumor Cells, Cultured
3.
Histochem Cell Biol ; 148(2): 105-115, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28321501

ABSTRACT

Tumor heterogeneity is considered a major cause for therapy resistance in colorectal cancer. Sub-populations of cells with different genetic alterations may exist in spatially distinct areas. Upon therapy, resistant sub-clones may enrich and ultimately lead to disease progression. Although ample data are available on tumors which are heterogeneous on a morphological level, only little is known about morphologically homogeneous tumors. We aimed to investigate if morphologically homogeneous colorectal cancer can harbor a heterogeneous genetic landscape. We chose to microdissect six morphologically homogeneous colorectal carcinomas into several areas and performed next-generation sequencing (NGS) to identify tumors with genetic heterogeneity. We then applied an mRNA-based in situ mutation detection technology based on padlock probes to localize and visualize mutations directly in the tumor tissue. In three out of six tumors, NGS revealed a high rate of variability of mutations between different tumor areas. We selected two cases for in situ mutation detection to visualize genetic heterogeneity. In situ mutation detection confirmed differences in mutant allele frequencies between different tumor areas of morphological homogeneous tumors. We conclude that genetic heterogeneity in morphologically homogeneous colorectal cancer is an observable, but underreported event. Our results illustrate the power of in situ mutation analysis to visualize genetic heterogeneity directly in tumor tissue.


Subject(s)
Colorectal Neoplasms/genetics , DNA Mutational Analysis , Genetic Heterogeneity , Cell Line, Tumor , Colorectal Neoplasms/pathology , Humans , Point Mutation/genetics
4.
Proc Natl Acad Sci U S A ; 113(13): 3428-35, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26929359

ABSTRACT

Disrupted brain iron homeostasis is a common feature of neurodegenerative disease. To begin to understand how neuronal iron handling might be involved, we focused on dopaminergic neurons and asked how inactivation of transport proteins affected iron homeostasis in vivo in mice. Loss of the cellular iron exporter, ferroportin, had no apparent consequences. However, loss of transferrin receptor 1, involved in iron uptake, caused neuronal iron deficiency, age-progressive degeneration of a subset of dopaminergic neurons, and motor deficits. There was gradual depletion of dopaminergic projections in the striatum followed by death of dopaminergic neurons in the substantia nigra. Damaged mitochondria accumulated, and gene expression signatures indicated attempted axonal regeneration, a metabolic switch to glycolysis, oxidative stress, and the unfolded protein response. We demonstrate that loss of transferrin receptor 1, but not loss of ferroportin, can cause neurodegeneration in a subset of dopaminergic neurons in mice.


Subject(s)
Dopaminergic Neurons/metabolism , Iron/metabolism , Nerve Degeneration/etiology , Nerve Degeneration/metabolism , Animals , Brain/metabolism , Brain/pathology , Cation Transport Proteins/deficiency , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Dopaminergic Neurons/pathology , Female , Homeostasis , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Nerve Degeneration/pathology , Receptors, Transferrin/deficiency , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...