Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 19(1): e1011136, 2023 01.
Article in English | MEDLINE | ID: mdl-36716344

ABSTRACT

African swine fever virus (ASFV) causes a devastating hemorrhagic disease with worldwide circulation and no widely available therapeutic prevention. The infectious particle has a multilayered architecture that is articulated upon an endoplasmic reticulum (ER)-derived inner envelope. This membrane acts as docking platform for the assembly of the outer icosahedral capsid and the underlying core shell, a bridging layer required for the formation of the central genome-containing nucleoid. While the details of outer capsid assembly are relatively well understood, those of core formation remain unclear. Here we report the functional characterization of pEP84R, a transmembrane polypeptide embedded in the inner envelope that surrounds the viral core. Using an ASFV recombinant inducibly expressing the EP84R gene, we show that absence of pEP84R results in the formation of non-infectious core-less icosahedral particles displaying a significant DNA-packaging defect. Concomitantly, aberrant core shell-like structures formed by co-assembly of viral polyproteins pp220 and pp62 are mistargeted to non-ER membranes, as also occurs when these are co-expressed in the absence of other viral proteins. Interestingly, co-expression of both polyproteins with pEP84R led to the formation of ER-targeted core shell-like assemblies and co-immunoprecipitation assays showed that pEP84R binds to the N-terminal region of pp220. Altogether, these results indicate that pEP84R plays a crucial role in core assembly by targeting the core shell polyproteins to the inner viral envelope, which enables subsequent genome packaging and nucleoid formation. These findings unveil a key regulatory mechanism for ASFV morphogenesis and identify a relevant novel target for the development of therapeutic tools against this re-emerging threat.


Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , Swine , African Swine Fever Virus/genetics , African Swine Fever Virus/metabolism , Virus Assembly , Viral Proteins/genetics , Viral Proteins/metabolism , Polyproteins/metabolism , Membrane Proteins
2.
mBio ; 11(4)2020 08 11.
Article in English | MEDLINE | ID: mdl-32788374

ABSTRACT

African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus (NCLDV) causing a lethal hemorrhagic disease that currently threatens the global pig industry. Despite its relevance in the infectious cycle, very little is known about the internalization of ASFV in the host cell. Here, we report the characterization of ASFV protein pE199L, a cysteine-rich structural polypeptide with similarity to proteins A16, G9, and J5 of the entry fusion complex (EFC) of poxviruses. Using biochemical and immunomicroscopic approaches, we found that, like the corresponding poxviral proteins, pE199L localizes to the inner viral envelope and behaves as an integral transmembrane polypeptide with cytosolic intramolecular disulfide bonds. Using an ASFV recombinant that inducibly expresses the E199L gene, we found that protein pE199L is not required for virus assembly and egress or for virus-cell binding and endocytosis but is required for membrane fusion and core penetration. Interestingly, similar results have been previously reported for ASFV protein pE248R, an inner membrane virion component related to the poxviral L1 and F9 EFC proteins. Taken together, these findings indicate that ASFV entry relies on a form of fusion machinery comprising proteins pE248R and pE199L that displays some similarities to the unconventional fusion apparatus of poxviruses. Also, these results provide novel targets for the development of strategies that block the first stages of ASFV replication.IMPORTANCE African swine fever virus (ASFV) causes a highly lethal swine disease that is currently present in many countries of Eastern Europe, the Russian Federation, and Southeast Asia, severely affecting the pig industry. Despite extensive research, effective vaccines or antiviral strategies are still lacking and relevant gaps in knowledge of the fundamental biology of the viral infection cycle exist. In this study, we identified pE199L, a protein of the inner viral membrane that is required for virus entry. More specifically, pE199L is necessary for the fusion event that leads to the penetration of the genome-containing core in the host cell. Our results significantly increase our knowledge of the process of internalization of African swine fever virus, which may instruct future research on antiviral strategies.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever Virus/physiology , Membrane Fusion , Viral Proteins/metabolism , Virus Internalization , African Swine Fever Virus/metabolism , Animals , Chlorocebus aethiops , Endocytosis , Swine , Vero Cells , Viral Proteins/genetics
3.
J Biol Chem ; 295(1): 1-12, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31649031

ABSTRACT

African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus (NCLDV) that causes a devastating swine disease currently present in many countries of Africa, Europe, and Asia. Despite intense research efforts, relevant gaps in the architecture of the infectious virus particle remain. Here, we used single-particle cryo-EM to analyze the three-dimensional structure of the mature ASFV particle. Our results show that the ASFV virion, with a radial diameter of ∼2,080 Å, encloses a genome-containing nucleoid surrounded by two distinct icosahedral protein capsids and two lipoprotein membranes. The outer capsid forms a hexagonal lattice (triangulation number T = 277) composed of 8,280 copies of the double jelly-roll major capsid protein (MCP) p72, arranged in trimers displaying a pseudo-hexameric morphology, and of 60 copies of a penton protein at the vertices. The inner protein layer, organized as a T = 19 capsid, confines the core shell, and it is composed of the mature products derived from the ASFV polyproteins pp220 and pp62. Also, an icosahedral membrane lies between the two protein layers, whereas a pleomorphic envelope wraps the outer capsid. This high-level organization confers to ASFV a unique architecture among the NCLDVs that likely reflects the complexity of its infection process and may help explain current challenges in controlling it.


Subject(s)
African Swine Fever Virus/ultrastructure , Capsid Proteins/ultrastructure , Capsid/ultrastructure , Viral Envelope Proteins/ultrastructure , African Swine Fever Virus/metabolism , Animals , Capsid Proteins/chemistry , Chlorocebus aethiops , Cryoelectron Microscopy , Lipids/chemistry , Protein Multimerization , Vero Cells , Viral Envelope Proteins/chemistry
4.
J Virol ; 92(23)2018 12 01.
Article in English | MEDLINE | ID: mdl-30185597

ABSTRACT

African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.


Subject(s)
African Swine Fever Virus/physiology , African Swine Fever/metabolism , Polyproteins/metabolism , Proteome/analysis , Viral Proteins/metabolism , Virion/metabolism , African Swine Fever/virology , African Swine Fever Virus/ultrastructure , Amino Acid Sequence , Animals , Chlorocebus aethiops , Microscopy, Immunoelectron , Swine , Vero Cells , Virion/growth & development
5.
J Biol Chem ; 293(35): 13351-13363, 2018 08 31.
Article in English | MEDLINE | ID: mdl-29991591

ABSTRACT

During reverse transcription of the HIV-1 genome, two strand-transfer events occur. Both events rely on the RNase H cleavage activity of reverse transcriptases (RTs) and template homology. Using a panel of mutants of HIV-1BH10 (group M/subtype B) and HIV-1ESP49 (group O) RTs and in vitro assays, we demonstrate that there is a strong correlation between RT minus-strand transfer efficiency and template-primer binding affinity. The highest strand transfer efficiencies were obtained with HIV-1ESP49 RT mutants containing the substitutions K358R/A359G/S360A, alone or in combination with V148I or T355A/Q357M. These HIV-1ESP49 RT mutants had been previously engineered to increase their DNA polymerase activity at high temperatures. Now, we found that RTs containing RNase H-inactivating mutations (D443N or E478Q) were devoid of strand transfer activity, whereas enzymes containing F61A or L92P had very low strand transfer activity. The strand transfer defect produced by L92P was attributed to a loss of template-primer binding affinity and, more specifically, to the higher dissociation rate constants (koff) shown by RTs bearing this substitution. Although L92P also deleteriously affected the RT's nontemplated nucleotide addition activity, neither nontemplated nucleotide addition activity nor the RT's clamp activities contributed to increased template switching when all tested mutant and WT RTs were considered. Interestingly, our results also revealed an association between efficient strand transfer and the generation of secondary cleavages in the donor RNA, consistent with the creation of invasion sites. Exposure of the elongated DNA at these sites facilitate acceptor (RNA or DNA) binding and promote template switching.


Subject(s)
DNA, Viral/metabolism , HIV Reverse Transcriptase/metabolism , HIV-1/metabolism , Ribonuclease H/metabolism , HIV Reverse Transcriptase/genetics , HIV-1/genetics , Humans , Point Mutation , Protein Binding , RNA, Viral/metabolism , Templates, Genetic
6.
Biochemistry ; 52(51): 9318-28, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24303887

ABSTRACT

At high temperatures, RNA denaturation can improve the efficiency and specificity of reverse transcription. Refined structures and molecular models of HIV-1 reverse transcriptases (RTs) from phylogenetically distant clades (i.e., group M subtype B and group O) revealed a major interaction between the template-primer and the Arg³58-Gly³59-Ala³6° triad in the large subunit of HIV-1M/B RT. However, fewer contacts were predicted for the equivalent Lys³58-Ala³59-Ser³6° triad of HIV-1O RT and the nucleic acid. An engineered HIV-1O K358R/A359G/S360A RT showed increased cDNA synthesis efficiency above 68 °C, as determined by qualitative and quantitative reverse transcription polymerase chain reactions. In comparison with wild-type HIV-1O RT, the mutant enzyme showed higher thermal stability but retained wild-type RNase H activity. Mutations that increased the accuracy of HIV-1M/B RTs were tested in combination with the K358R/A359G/S360A triple mutation. Some of them (e.g., F61A, K65R, K65R/V75I, and V148I) had a negative effect on reverse transcription efficiency above 65 °C. RTs with improved DNA binding affinities also showed higher cDNA synthesis efficiencies at elevated temperatures. Two of the most thermostable RTs (i.e., mutants T69SSG/K358R/A359G/S360A and K358R/A359G/S360A/E478Q) showed moderately increased fidelity in forward mutation assays. Our results demonstrate that the triad of Arg³58, Gly³59, and Ala³6° in the major groove binding track of HIV-1 RT is a major target for RT stabilization, and most relevant for improving reverse transcription efficiency at high temperatures.


Subject(s)
DNA, Complementary/biosynthesis , DNA/metabolism , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , Models, Molecular , RNA, Viral/metabolism , Amino Acid Motifs , Amino Acid Substitution , Binding Sites , Computer Simulation , DNA/chemistry , Databases, Protein , Enzyme Stability , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , HIV-1/metabolism , Hot Temperature , Kinetics , Molecular Conformation , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/metabolism , RNA, Viral/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Ribonuclease H, Human Immunodeficiency Virus/chemistry , Ribonuclease H, Human Immunodeficiency Virus/genetics , Ribonuclease H, Human Immunodeficiency Virus/metabolism , Thymine Nucleotides/chemistry , Thymine Nucleotides/metabolism
7.
Antiviral Res ; 92(2): 139-49, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21896288

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a major target of antiretroviral intervention. Non-nucleoside RT inhibitors (NNRTIs) bind to a hydrophobic pocket located away from the DNA polymerase catalytic site of the RT. Approved NNRTIs are nevirapine, delavirdine, efavirenz, etravirine and rilpivirine. This review describes how these inhibitors affect RT function, the structural basis of NNRTI binding, and the role of specific amino acid substitutions at the NNRTI binding pocket in the acquisition of high-level drug resistance. However, two or more amino acid substitutions are required to achieve >20-fold decreased susceptibility to recently developed NNRTIs such as etravirine or rilpivirine, in phenotypic assays. While genotypic analysis of HIV-1 isolates in infected patients is usually restricted to residues 1-250 of the RT, recent reports indicate that several residues in the connection subdomain of the RT (comprising residues 319-426) could also modulate NNRTI resistance. Examples are Y318F or W, N348I, A376S and T369I or V. Tyr-318 participates in NNRTI binding, but other amino acid substitutions in the connection subdomain may affect resistance through an indirect mechanism. Studies on the effects of N348I and A376S on NNRTI resistance indicate that these changes could affect inhibitor binding by altering the interaction between RT subunits or between the RT and the template-primer. Moreover, those mutations could also modulate RNase H activity not only during DNA strand elongation, but also at the initiation of plus strand DNA synthesis as demonstrated for the N348I mutation.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral , HIV Reverse Transcriptase/genetics , HIV-1/drug effects , HIV-1/genetics , Mutation, Missense , Reverse Transcriptase Inhibitors/pharmacology , Anti-HIV Agents/metabolism , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Binding , Reverse Transcriptase Inhibitors/metabolism
8.
J Biol Chem ; 286(23): 20615-24, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21504903

ABSTRACT

Single amino acid deletions in the ß3-ß4 hairpin loop of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have been identified in heavily treated patients. The deletion of Asp-67 together with mutations T69G and K70R (Δ67 complex) are usually associated with thymidine analog resistance mutations (TAMs) (e.g. M41L, T215Y, etc.) while the deletion of Thr-69 (Δ69) is rarely found in isolates containing TAMs. Here, we show that the complex Δ67/T69G/K70R enhances ATP-dependent phosphorolytic activity on primers terminated with 3'-azido-3'-deoxythymidine (AZT) or 2',3'-didehydro-2',3'-dideoxythymidine (d4T) both in the presence or absence of TAMs (i.e. M41L/T215Y), while Δ69 (or the complex S68G/Δ69/K70G) antagonize the effects of TAMs in ATP-mediated excision. These effects are consistent with AZT susceptibility data obtained with recombinant HIV-1 bearing the relevant RTs. Molecular dynamics studies based on models of wild-type HIV-1 RT and mutant Δ69, Δ67/T69G/K70R, and D67N/K70R RTs support a relevant role for Lys/Arg-70 in the excision reaction. In Δ69 RT, the side chain of Lys-70 locates away from the putative pyrophosphate binding site. Therefore, its participation in interactions required for the excision reaction is unlikely. Our theoretical studies also suggest a role for Lys-219 in thymidine analog excision/discrimination. However, pre-steady-state kinetics revealed only minor differences in selectivity of AZT-triphosphate versus dTTP between deletion-containing RTs and their homologous enzymes having the K219E mutation. K219E reduced both ATP- and pyrophosphate-mediated excision of primers terminated with thymidine analogues, only when introduced in RTs bearing Δ69 or S68G/Δ69/K70G, providing further biochemical evidence that explains the lack of association of Δ69 and TAMs in HIV-1 isolates.


Subject(s)
HIV Reverse Transcriptase , HIV-1 , Mutation , Stavudine , Zidovudine , DNA, Viral/biosynthesis , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , HIV-1/genetics , Humans , Kinetics , Stavudine/chemistry , Stavudine/metabolism , Zidovudine/chemistry , Zidovudine/metabolism
9.
J Biol Chem ; 284(47): 32792-802, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19801659

ABSTRACT

Val(75) of HIV-1 reverse transcriptase (RT) plays a role in positioning the template nucleotide +1 during the formation of the ternary complex. Mutations, such as V75M and V75A, emerge in patients infected with HIV-1 group M subtype B and group O variants, after failing treatment with stavudine (d4T) and other nucleoside RT inhibitors. V75I is an accessory mutation of the Q151M multidrug resistance complex of HIV-1 RT and is rarely associated with thymidine analogue resistance mutations (TAMs). In vitro, it confers resistance to acyclovir. TAMs confer resistance to zidovudine (AZT) and d4T by increasing the rate of ATP-mediated excision of the terminal nucleotide monophosphate (primer unblocking). In a wild-type HIV-1 group O RT sequence context, V75A and V75M conferred increased excision activity on d4T-terminated primers, in the presence of PP(i). In contrast, V75I decreased the PP(i)-mediated unblocking efficiency on AZT and d4T-terminated primers, in different sequence contexts (i.e. wild-type group M subtype B or group O RTs). Interestingly, in the sequence context of an excision-proficient RT (i.e. M41L/A62V/T69SSS/K70R/T215Y), the introduction of V75I led to a significant decrease of its ATP-dependent excision activity on AZT-, d4T-, and acyclovir-terminated primers. The excision rate of d4T-monophosphate in the presence of ATP (3.2 mm) was about 10 times higher for M41L/A62V/T69SSS/K70R/T215Y than for the mutant M41L/A62V/T69SSS/K70R/V75I/T215Y RT. The antagonistic effect of V75I with TAMs was further demonstrated in phenotypic assays. Recombinant HIV-1 containing the M41L/A62V/T69SSS/K70R/V75I/T215Y RT showed 18.3- and 1.5-fold increased susceptibility to AZT and d4T, respectively, in comparison with virus containing the M41L/A62V/T69SSS/K70R/T215Y RT.


Subject(s)
HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , Stavudine/chemistry , Thymidine/analogs & derivatives , Valine/chemistry , Acyclovir/pharmacology , Adenosine Triphosphate/chemistry , Anti-HIV Agents/pharmacology , DNA Mutational Analysis , DNA Primers/chemistry , Drug Resistance, Multiple , Drug Resistance, Viral/genetics , HIV-1/metabolism , Humans , Kinetics , Thymidine/chemistry , Zidovudine/pharmacology
10.
J Mol Biol ; 392(4): 872-84, 2009 Oct 02.
Article in English | MEDLINE | ID: mdl-19651140

ABSTRACT

Reverse transcription coupled with DNA amplification has become a well-established and powerful molecular technique for studying ribonucleic acids. However, the efficiency of those reactions is largely dependent on the molecular properties of currently used reverse transcriptases (RTs). Engineered and natural RT variants with improved thermostability and fidelity of DNA synthesis should be of great utility in the amplification of RNA targets. In this study, we demonstrate that the wild-type (WT) HIV-1 group O (O_WT) RT shows increased thermostability in comparison with Moloney murine leukemia virus RT and a prototypic HIV-1 group M:subtype B (BH10_WT) RT, while rendering higher yields in reverse transcription PCRs that included a cDNA synthesis step performed at a high temperature range (57-69 degrees C). In addition, the O_WT RT showed 2.5-fold increased accuracy in M13 lacZalpha forward mutation assays in comparison with the BH10_WT RT. Unlike the BH10_WT enzyme, O_WT RT showed a very low error rate for frameshifts. Mutational hot spots induced by O_WT RT occurred at nucleotide runs, suggesting a dislocation-mediated mechanism for the generation of base substitutions. In HIV-1 group O RT, substituting Ile75 for Val rendered an enzyme that was 1.9 and 4.7 times more faithful than O_WT RT and BH10_WT RTs, respectively, in forward mutation assays. The mutant RT also showed increased misinsertion and mispair extension fidelity in kinetic assays. However, its mutational spectrum was similar to that obtained with the WT group O polymerase. V75I caused a loss of efficiency of reverse transcription PCR amplifications at 65 and 68 degrees C in comparison with O_WT RT. However, a double mutant devoid of RNase H activity (V75I/E478Q) was found to reverse-transcribe at temperatures as high as 68 degrees C, while maintaining the increased accuracy of the V75I mutant.


Subject(s)
DNA Replication/physiology , HIV Reverse Transcriptase/metabolism , HIV Reverse Transcriptase/physiology , Base Sequence , Efficiency , Enzyme Stability , Mutagenesis, Insertional/physiology , Mutant Proteins/metabolism , Mutant Proteins/physiology , Polymorphism, Single Nucleotide/physiology , Reverse Transcriptase Polymerase Chain Reaction , Substrate Specificity , Temperature
11.
Proteins ; 71(2): 565-74, 2008 May 01.
Article in English | MEDLINE | ID: mdl-17963236

ABSTRACT

The structural and dynamical changes occurring before nucleotide addition were studied using molecular dynamics (MD) simulations of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) complexes containing one or two Mg2+ ions in the presence of dNTP. Our models revealed that the formation of a catalytically competent DNA polymerase complex required subtle rearrangements at the catalytic site A, which occurred only when an Mg2+ ion was bound. This model has been validated using pre-steady-state kinetics to show that free Mg2+ is necessary to obtain a catalytically competent polymerase. Kinetic studies carried out with Be2+ as a cofactor permitted the functional discrimination between metal sites A and B. At low concentrations, Be2+ increased the catalytic efficiency of the polymerase, while at higher concentrations, it competed with Mg2+ for binding to site A, and inhibited DNA polymerization. In agreement with experimental data, MD simulations revealed that the catalytic attack distance between the 3-OH of the primer and the phosphorus in complexes containing Be2+ instead of Mg2+ at site A was above 4.5 A. Our findings provide a detailed description of the mechanism of DNA polymerization and should be helpful to understand the molecular basis of DNA replication fidelity.


Subject(s)
HIV Reverse Transcriptase/drug effects , Magnesium/pharmacology , Beryllium/chemistry , Beryllium/pharmacology , Catalytic Domain , Computer Simulation , HIV Reverse Transcriptase/chemistry , Kinetics , Models, Molecular , Protein Binding , Protein Conformation/drug effects
12.
J Mol Biol ; 375(5): 1234-48, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18155043

ABSTRACT

The side chain of Val75 stabilizes the fingers subdomain of the human immunodeficiency virus type 1 reverse transcriptase (RT), while its peptide backbone interacts with the single-stranded DNA template (at nucleotide +1) and with the peptide backbone of Gln151. Specific DNA polymerase activities of mutant RTs bearing amino acid substitutions at position 75 (i.e., V75A, V75F, V75I, V75L, V75M, V75S and V75T) were relatively high. Primer extension experiments carried out in the absence of one deoxyribonucleoside-triphosphate suggested that mutations did not affect the accuracy of the RT, except for V75A, V75F, V75I, and to a lesser extent V75T. The fidelity of RTs bearing mutations V75F and V75I increased 1.8- and 3-fold, respectively, as measured by the M13 lacZ alpha forward mutation assay, while V75A showed 1.4-fold decreased accuracy. Steady- and pre-steady-state kinetics demonstrated that the increased fidelity of V75I and V75F was related to their decreased ability to extend mismatched template-primers, while misincorporation efficiencies were not significantly affected by mutations. The increased mispair extension fidelity of mutant V75I RT could be attributed to the nucleotide affinity loss, observed in reactions with mismatched template-primers. Altogether, these data suggest that Val75 interactions with the 5' template overhang are important determinants of fidelity.


Subject(s)
Amino Acid Substitution , DNA, Viral/biosynthesis , HIV Reverse Transcriptase/genetics , HIV-1/enzymology , Valine/metabolism , Bacteriophage M13/genetics , Base Pair Mismatch , Binding Sites , Catalysis , Crystallography, X-Ray , DNA Primers/metabolism , DNA-Directed DNA Polymerase/metabolism , Escherichia coli/genetics , HIV Reverse Transcriptase/isolation & purification , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , Humans , Kinetics , Models, Chemical , Models, Molecular , Mutagenesis, Insertional , Plasmids , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Substrate Specificity , Templates, Genetic
13.
Curr Pharm Des ; 12(15): 1811-25, 2006.
Article in English | MEDLINE | ID: mdl-16724949

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is an important target of drugs fighting HIV infection. The introduction of potent antiretroviral therapies based on the use of RT inhibitors and/or protease inhibitors has been an important achievement towards the control of AIDS. However, the development of drug resistance constitutes a major hurdle towards long-term efficacy of those therapies. With the increasing complexity of the antiretroviral regimens, novel mutational patterns conferring high-level resistance to nucleoside and nonnucleoside RT inhibitors have been identified in viral isolates. Among them, insertions and deletions in the beta3-beta4 hairpin-loop-coding region of HIV-1 RT have been identified in heavily-treated patients. Insertions of one, two or several residues appear to have a significant impact on nucleoside analogue resistance. The frequently found combination of a dipeptide insertion and thymidine analogue resistance mutations (i.e. T215Y) in the viral RT confers an ATP-dependent phosphorolytic activity that facilitates the removal of the inhibitor from primers terminated with zidovudine or stavudine. Furthermore, this mechanism appears to be relevant for resistance mediated by one amino acid-deletions appearing in combination with thymidine analogue resistance mutations. However, in other sequence contexts (i.e. in the presence of Q151M), the effects of the deletion are not fully understood. Drugs targeting the excision repair mechanism could be an important aid in the fight against multinucleoside-resistant HIV isolates bearing complex mutational patterns in their RT-coding region.


Subject(s)
HIV Reverse Transcriptase/genetics , HIV-1/drug effects , Reverse Transcriptase Inhibitors/pharmacology , Amino Acid Sequence , Base Sequence , Drug Resistance, Viral/genetics , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , HIV-1/physiology , Humans , Molecular Sequence Data , Mutagenesis, Insertional/genetics , Sequence Alignment , Sequence Deletion/genetics
14.
J Mol Biol ; 349(3): 451-63, 2005 Jun 10.
Article in English | MEDLINE | ID: mdl-15878178

ABSTRACT

A dipeptide insertion between codons 69 and 70 together with the amino acid substitution T215Y in the reverse transcriptase (RT)-coding region of human immunodeficiency virus type 1 (HIV-1) strains are known to confer phenotypic resistance to zidovudine (AZT) and stavudine (d4T). Phenotypic resistance correlates with an increased ATP-dependent phosphorolytic activity. Nucleoside alpha-boranophosphate diastereoisomers derived from AZT and d4T were tested as substrates of a multidrug-resistant HIV-1 RT (designated as SS RT) bearing a Ser-Ser insertion at codons 69-70 and other drug resistance-related mutations, in DNA polymerization assays and ATP-mediated excision reactions. Using pre-steady-state kinetics, we show that SS RT can incorporate both R(p) and S(p) diastereoisomers, although R(p) is the preferred isomer. Chirality at the internucleotidic linkage formed upon incorporation of nucleoside alpha-boranophosphate did not affect ATP-mediated excision. As reported for AZT and d4T-terminated primers, substituting Thr, Asn or Ser for Tyr215 abrogates the ATP-dependent phosphorolytic activity on primers terminated with alpha-boranophosphate derivatives of thymidine analogues. However, unlike in the case of AZT, eliminating the dipeptide insertion in SS RT had no effect on the ATP-mediated excision of primers terminated with alpha-boranophosphate derivatives of d4T. Studies with ATP analogues showed that exchanging a non-bridging oxygen atom at the gamma-phosphate group for sulfur causes a significant reduction of the ATP-dependent phosphorolytic activity of SS RT. Interestingly, SS RT's excision activity is completely eliminated upon phosphorothioate substitution at the 3' end of primers terminated with AZT. These results suggest that phosphorothioate derivatives of currently approved drugs could be useful against excision-proficient HIV-1 strains.


Subject(s)
Drug Resistance, Multiple, Viral/physiology , HIV-1/metabolism , RNA-Directed DNA Polymerase/metabolism , Thymidine/analogs & derivatives , Zidovudine/analogs & derivatives , Adenosine Triphosphate/metabolism , Boron Compounds/metabolism , Dideoxynucleotides , HIV-1/enzymology , Humans , Kinetics , Mutation , Phosphorylation , RNA-Directed DNA Polymerase/genetics , Stavudine/analogs & derivatives , Thymidine/metabolism , Thymine Nucleotides/metabolism , Time Factors , Zidovudine/metabolism
15.
Virology ; 326(1): 103-12, 2004 Aug 15.
Article in English | MEDLINE | ID: mdl-15262499

ABSTRACT

A two-serine insertion at position 69 (i69SS) of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) appears to be critical to enhance multi-nucleoside RT inhibitor resistance (MNR) in the sequence context of multiple zidovudine (AZT) resistance mutations (i.e., M41L, L210W, T215Y). In this study, we measured the replication capacity relative to the wild-type (WT) HIV-1 of a series of recombinant viruses carrying the i69SS in the background of a clinical isolate with MNR in which we introduced mutations D67N, Y215T, Y215S, or Y215N. In vitro measurements included replication kinetics and growth competition assays at different multiplicities of infection (MOI). While the addition of D67N had a minor effect on replication capacity, the reversion of Tyr-215 to Thr, Ser, or Asn was sufficient to increase the virus ability to replicate in a drug-free environment. The same genotypic changes at position 215 rendered the MNR virus susceptible to AZT and stavudine. Interestingly, the presence of the insertion together with mutation T215Y in an otherwise WT sequence background was not sufficient to confer high-level resistance to AZT, although its replication capacity was clearly impaired. Therefore, the RT residue 215 plays a critical role in both replication capacity and drug resistance of multidrug-resistant viruses containing the i69SS.


Subject(s)
HIV Reverse Transcriptase/genetics , HIV-1/drug effects , Reverse Transcriptase Inhibitors/pharmacology , Adult , Cell Line , Codon , Drug Resistance, Multiple, Viral/genetics , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/genetics , HIV-1/growth & development , Humans , Male , Mutagenesis, Insertional , Mutation , Time Factors , Virus Replication/drug effects , Virus Replication/genetics
16.
J Biol Chem ; 279(23): 24569-77, 2004 Jun 04.
Article in English | MEDLINE | ID: mdl-15047690

ABSTRACT

Human immunodeficiency virus type 1 isolates having dipeptide insertions in the fingers subdomain of the reverse transcriptase (RT) show high level resistance to 3 '-azido-3 '-deoxythymidine (AZT) and other nucleoside analogues. Insertions are usually associated with thymidine analogue resistance mutations, such as T215Y. The resistance phenotype correlates with increased ATP-dependent phosphorolytic activity, which facilitates removal of thymidine analogues from inhibitor-terminated primers. In this report, we show that substituting Thr, Ser, or Asn for Tyr-215 in a multidrug-resistant RT, bearing a Ser-Ser insertion between codons 69 and 70, leads to AZT and stavudine resensitization through the loss of the ATP-mediated removal activity. The mutation D67N, which is rarely found in insertion-containing strains, had no effect on excision and a minor influence on resistance. Substituting Tyr-215 had a larger effect than deleting the dipeptide insertion. The presence of both the insertion and mutation T215Y in the wild-type BH10 RT conferred significant ATP-mediated removal activity and moderate resistance to AZT. However, resistance levels and unblocking activities were lower than those observed with the multidrug-resistant enzyme. Removal reactions can be inhibited by the next complementary dNTP. Both Tyr-215 and the dipeptide insertion affect RT-DNA.DNA-dNTP ternary complex formation, an effect that was not detected in the presence of foscarnet. Based on crystal structures of binary and ternary complexes of HIV-1 RT, we propose that Tyr-215 exerts its action by facilitating a proper orientation of the pyrophosphate donor molecule, whereas the effects on dNTP binding are indirect and could be related to significant conformational changes occurring during polymerization.


Subject(s)
Drug Resistance, Viral , HIV Reverse Transcriptase/metabolism , Adenosine Triphosphate/chemistry , Amino Acid Sequence , Base Sequence , Codon , DNA/chemistry , DNA Primers/chemistry , Gene Deletion , Kinetics , Models, Molecular , Molecular Sequence Data , Mutation , Peptides/chemistry , Phenotype , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Reverse Transcriptase Inhibitors/pharmacology , Sequence Homology, Amino Acid , Stavudine/pharmacology , Thymidine/chemistry , Time Factors , Tyrosine/chemistry , Zidovudine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...