Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neuron ; 103(3): 423-431.e4, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31196673

ABSTRACT

The paraventricular thalamus (PVT) is an interface for brain reward circuits, with input signals arising from structures, such as prefrontal cortex and hypothalamus, that are broadcast to downstream limbic targets. However, the precise synaptic connectivity, activity, and function of PVT circuitry for reward processing are unclear. Here, using in vivo two-photon calcium imaging, we find that PVT neurons projecting to the nucleus accumbens (PVT-NAc) develop inhibitory responses to reward-predictive cues coding for both cue-reward associative information and behavior. The multiplexed activity in PVT-NAc neurons is directed by opposing activity patterns in prefrontal and lateral hypothalamic afferent axons. Further, we find that prefrontal cue encoding may maintain accurate cue-reward processing, as optogenetic disruption of this encoding induced long-lasting effects on downstream PVT-NAc cue responses and behavioral cue discrimination. Together, these data reveal that PVT-NAc neurons act as an interface for reward processing by integrating relevant inputs to accurately inform reward-seeking behavior.


Subject(s)
Association Learning/physiology , Hypothalamic Area, Lateral/physiology , Midline Thalamic Nuclei/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Animals , Conditioning, Classical , Craving/physiology , Cues , Glutamic Acid/physiology , Hypothalamic Area, Lateral/cytology , Mice , Midline Thalamic Nuclei/cytology , Neural Pathways/physiology , Optogenetics , Patch-Clamp Techniques , Prefrontal Cortex/cytology , Reward , gamma-Aminobutyric Acid/physiology
2.
Nature ; 543(7643): 103-107, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28225752

ABSTRACT

The prefrontal cortex is a critical neuroanatomical hub for controlling motivated behaviours across mammalian species. In addition to intra-cortical connectivity, prefrontal projection neurons innervate subcortical structures that contribute to reward-seeking behaviours, such as the ventral striatum and midline thalamus. While connectivity among these structures contributes to appetitive behaviours, how projection-specific prefrontal neurons encode reward-relevant information to guide reward seeking is unknown. Here we use in vivo two-photon calcium imaging to monitor the activity of dorsomedial prefrontal neurons in mice during an appetitive Pavlovian conditioning task. At the population level, these neurons display diverse activity patterns during the presentation of reward-predictive cues. However, recordings from prefrontal neurons with resolved projection targets reveal that individual corticostriatal neurons show response tuning to reward-predictive cues, such that excitatory cue responses are amplified across learning. By contrast, corticothalamic neurons gradually develop new, primarily inhibitory responses to reward-predictive cues across learning. Furthermore, bidirectional optogenetic manipulation of these neurons reveals that stimulation of corticostriatal neurons promotes conditioned reward-seeking behaviour after learning, while activity in corticothalamic neurons suppresses both the acquisition and expression of conditioned reward seeking. These data show how prefrontal circuitry can dynamically control reward-seeking behaviour through the opposing activities of projection-specific cell populations.


Subject(s)
Appetitive Behavior/physiology , Cues , Neural Pathways , Neurons/physiology , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Reward , Animals , Calcium/analysis , Conditioning, Classical/physiology , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton , Molecular Imaging , Neuronal Plasticity , Nucleus Accumbens/cytology , Nucleus Accumbens/physiology , Thalamus/cytology , Thalamus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL