Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Heliyon ; 10(7): e29050, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38623206

ABSTRACT

Background: Anesthesiology plays a crucial role in perioperative care, critical care, and pain management, impacting patient experiences and clinical outcomes. However, our understanding of the anesthesiology research landscape is limited. Accordingly, we initiated a data-driven analysis through topic modeling to uncover research trends, enabling informed decision-making and fostering progress within the field. Methods: The easyPubMed R package was used to collect 32,300 PubMed abstracts spanning from 2000 to 2022. These abstracts were authored by 737 Anesthesiology Principal Investigators (PIs) who were recipients of National Institute of Health (NIH) funding from 2010 to 2022. Abstracts were preprocessed, vectorized, and analyzed with the state-of-the-art BERTopic algorithm to identify pillar topics and trending subtopics within anesthesiology research. Temporal trends were assessed using the Mann-Kendall test. Results: The publishing journals with most abstracts in this dataset were Anesthesia & Analgesia 1133, Anesthesiology 992, and Pain 671. Eight pillar topics were identified and categorized as basic or clinical sciences based on a hierarchical clustering analysis. Amongst the pillar topics, "Cells & Proteomics" had both the highest annual and total number of abstracts. Interestingly, there was an overall upward trend for all topics spanning the years 2000-2022. However, when focusing on the period from 2015 to 2022, topics "Cells & Proteomics" and "Pulmonology" exhibit a downward trajectory. Additionally, various subtopics were identified, with notable increasing trends in "Aneurysms", "Covid 19 Pandemic", and "Artificial intelligence & Machine Learning". Conclusion: Our work offers a comprehensive analysis of the anesthesiology research landscape by providing insights into pillar topics, and trending subtopics. These findings contribute to a better understanding of anesthesiology research and can guide future directions.

2.
Am J Obstet Gynecol ; 230(1S): S46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38355237

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This meeting abstract has been retracted at the request of the authors. The team determined further analysis is warranted before the formal presentation of the results.

3.
Nat Comput Sci ; 3(4): 346-359, 2023 Apr.
Article in English | MEDLINE | ID: mdl-38116462

ABSTRACT

Advanced measurement and data storage technologies have enabled high-dimensional profiling of complex biological systems. For this, modern multiomics studies regularly produce datasets with hundreds of thousands of measurements per sample, enabling a new era of precision medicine. Correlation analysis is an important first step to gain deeper insights into the coordination and underlying processes of such complex systems. However, the construction of large correlation networks in modern high-dimensional datasets remains a major computational challenge owing to rapidly growing runtime and memory requirements. Here we address this challenge by introducing CorALS (Correlation Analysis of Large-scale (biological) Systems), an open-source framework for the construction and analysis of large-scale parametric as well as non-parametric correlation networks for high-dimensional biological data. It features off-the-shelf algorithms suitable for both personal and high-performance computers, enabling workflows and downstream analysis approaches. We illustrate the broad scope and potential of CorALS by exploring perspectives on complex biological processes in large-scale multiomics and single-cell studies.

4.
Alzheimers Res Ther ; 15(1): 192, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37926851

ABSTRACT

BACKGROUND: We have proposed that cognitive resilience (CR) counteracts brain damage from Alzheimer's disease (AD) or AD-related dementias such that older individuals who harbor neurodegenerative disease burden sufficient to cause dementia remain cognitively normal. However, CR traditionally is considered a binary trait, capturing only the most extreme examples, and is often inconsistently defined. METHODS: This study addressed existing discrepancies and shortcomings of the current CR definition by proposing a framework for defining CR as a continuous variable for each neuropsychological test. The linear equations clarified CR's relationship to closely related terms, including cognitive function, reserve, compensation, and damage. Primarily, resilience is defined as a function of cognitive performance and damage from neuropathologic damage. As such, the study utilized data from 844 individuals (age = 79 ± 12, 44% female) in the National Alzheimer's Coordinating Center cohort that met our inclusion criteria of comprehensive lesion rankings for 17 neuropathologic features and complete neuropsychological test results. Machine learning models and GWAS then were used to identify medical and genetic factors that are associated with CR. RESULTS: CR varied across five cognitive assessments and was greater in female participants, associated with longer survival, and weakly associated with educational attainment or APOE ε4 allele. In contrast, damage was strongly associated with APOE ε4 allele (P value < 0.0001). Major predictors of CR were cardiovascular health and social interactions, as well as the absence of behavioral symptoms. CONCLUSIONS: Our framework explicitly decoupled the effects of CR from neuropathologic damage. Characterizations and genetic association study of these two components suggest that the underlying CR mechanism has minimal overlap with the disease mechanism. Moreover, the identified medical features associated with CR suggest modifiable features to counteract clinical expression of damage and maintain cognitive function in older individuals.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Female , Aged , Aged, 80 and over , Male , Cognitive Dysfunction/diagnosis , Apolipoprotein E4/genetics , Alzheimer Disease/pathology , Cognition
5.
NPJ Digit Med ; 6(1): 171, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770643

ABSTRACT

Preterm birth (PTB) is the leading cause of infant mortality globally. Research has focused on developing predictive models for PTB without prioritizing cost-effective interventions. Physical activity and sleep present unique opportunities for interventions in low- and middle-income populations (LMICs). However, objective measurement of physical activity and sleep remains challenging and self-reported metrics suffer from low-resolution and accuracy. In this study, we use physical activity data collected using a wearable device comprising over 181,944 h of data across N = 1083 patients. Using a new state-of-the art deep learning time-series classification architecture, we develop a 'clock' of healthy dynamics during pregnancy by using gestational age (GA) as a surrogate for progression of pregnancy. We also develop novel interpretability algorithms that integrate unsupervised clustering, model error analysis, feature attribution, and automated actigraphy analysis, allowing for model interpretation with respect to sleep, activity, and clinical variables. Our model performs significantly better than 7 other machine learning and AI methods for modeling the progression of pregnancy. We found that deviations from a normal 'clock' of physical activity and sleep changes during pregnancy are strongly associated with pregnancy outcomes. When our model underestimates GA, there are 0.52 fewer preterm births than expected (P = 1.01e - 67, permutation test) and when our model overestimates GA, there are 1.44 times (P = 2.82e - 39, permutation test) more preterm births than expected. Model error is negatively correlated with interdaily stability (P = 0.043, Spearman's), indicating that our model assigns a more advanced GA when an individual's daily rhythms are less precise. Supporting this, our model attributes higher importance to sleep periods in predicting higher-than-actual GA, relative to lower-than-actual GA (P = 1.01e - 21, Mann-Whitney U). Combining prediction and interpretability allows us to signal when activity behaviors alter the likelihood of preterm birth and advocates for the development of clinical decision support through passive monitoring and exercise habit and sleep recommendations, which can be easily implemented in LMICs.

6.
Nat Commun ; 14(1): 4947, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587197

ABSTRACT

Assay for Transposase Accessible Chromatin by sequencing (ATAC-seq) accurately depicts the chromatin regulatory state and altered mechanisms guiding gene expression in disease. However, bulk sequencing entangles information from different cell types and obscures cellular heterogeneity. To address this, we developed Cellformer, a deep learning method that deconvolutes bulk ATAC-seq into cell type-specific expression across the whole genome. Cellformer enables cost-effective cell type-specific open chromatin profiling in large cohorts. Applied to 191 bulk samples from 3 brain regions, Cellformer identifies cell type-specific gene regulatory mechanisms involved in resilience to Alzheimer's disease, an uncommon group of cognitively healthy individuals that harbor a high pathological load of Alzheimer's disease. Cell type-resolved chromatin profiling unveils cell type-specific pathways and nominates potential epigenetic mediators underlying resilience that may illuminate therapeutic opportunities to limit the cognitive impact of the disease. Cellformer is freely available to facilitate future investigations using high-throughput bulk ATAC-seq data.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Chromatin/genetics , Biological Assay , Cell Cycle , Epigenesis, Genetic
7.
Sci Adv ; 9(21): eade7692, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37224249

ABSTRACT

Preterm birth (PTB) is the leading cause of death in children under five, yet comprehensive studies are hindered by its multiple complex etiologies. Epidemiological associations between PTB and maternal characteristics have been previously described. This work used multiomic profiling and multivariate modeling to investigate the biological signatures of these characteristics. Maternal covariates were collected during pregnancy from 13,841 pregnant women across five sites. Plasma samples from 231 participants were analyzed to generate proteomic, metabolomic, and lipidomic datasets. Machine learning models showed robust performance for the prediction of PTB (AUROC = 0.70), time-to-delivery (r = 0.65), maternal age (r = 0.59), gravidity (r = 0.56), and BMI (r = 0.81). Time-to-delivery biological correlates included fetal-associated proteins (e.g., ALPP, AFP, and PGF) and immune proteins (e.g., PD-L1, CCL28, and LIFR). Maternal age negatively correlated with collagen COL9A1, gravidity with endothelial NOS and inflammatory chemokine CXCL13, and BMI with leptin and structural protein FABP4. These results provide an integrated view of epidemiological factors associated with PTB and identify biological signatures of clinical covariates affecting this disease.


Subject(s)
Premature Birth , Infant, Newborn , Pregnancy , Child , Humans , Female , Premature Birth/epidemiology , Developing Countries , Multiomics , Proteomics , Chemokines, CC
8.
Sci Transl Med ; 15(683): eadc9854, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36791208

ABSTRACT

Although prematurity is the single largest cause of death in children under 5 years of age, the current definition of prematurity, based on gestational age, lacks the precision needed for guiding care decisions. Here, we propose a longitudinal risk assessment for adverse neonatal outcomes in newborns based on a deep learning model that uses electronic health records (EHRs) to predict a wide range of outcomes over a period starting shortly before conception and ending months after birth. By linking the EHRs of the Lucile Packard Children's Hospital and the Stanford Healthcare Adult Hospital, we developed a cohort of 22,104 mother-newborn dyads delivered between 2014 and 2018. Maternal and newborn EHRs were extracted and used to train a multi-input multitask deep learning model, featuring a long short-term memory neural network, to predict 24 different neonatal outcomes. An additional cohort of 10,250 mother-newborn dyads delivered at the same Stanford Hospitals from 2019 to September 2020 was used to validate the model. Areas under the receiver operating characteristic curve at delivery exceeded 0.9 for 10 of the 24 neonatal outcomes considered and were between 0.8 and 0.9 for 7 additional outcomes. Moreover, comprehensive association analysis identified multiple known associations between various maternal and neonatal features and specific neonatal outcomes. This study used linked EHRs from more than 30,000 mother-newborn dyads and would serve as a resource for the investigation and prediction of neonatal outcomes. An interactive website is available for independent investigators to leverage this unique dataset: https://maternal-child-health-associations.shinyapps.io/shiny_app/.


Subject(s)
Infant Health , Infant, Premature , Adult , Child , Infant, Newborn , Humans , Child, Preschool , Gestational Age , Morbidity , Risk Assessment
9.
Alzheimers Dement ; 19(7): 3005-3018, 2023 07.
Article in English | MEDLINE | ID: mdl-36681388

ABSTRACT

INTRODUCTION: Post-mortem analysis provides definitive diagnoses of neurodegenerative diseases; however, only a few can be diagnosed during life. METHODS: This study employed statistical tools and machine learning to predict 17 neuropathologic lesions from a cohort of 6518 individuals using 381 clinical features (Table S1). The multisite data allowed validation of the model's robustness by splitting train/test sets by clinical sites. A similar study was performed for predicting Alzheimer's disease (AD) neuropathologic change without specific comorbidities. RESULTS: Prediction results show high performance for certain lesions that match or exceed that of research annotation. Neurodegenerative comorbidities in addition to AD neuropathologic change resulted in compounded, but disproportionate, effects across cognitive domains as the comorbidity number increased. DISCUSSION: Certain clinical features could be strongly associated with multiple neurodegenerative diseases, others were lesion-specific, and some were divergent between lesions. Our approach could benefit clinical research, and genetic and biomarker research by enriching cohorts for desired lesions.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Comorbidity , Neuropathology , Biomarkers
10.
Int J Cardiol ; 374: 95-99, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36528138

ABSTRACT

BACKGROUND: This study aimed to develop a machine learning (ML) model to identify patients who are likely to have pulmonary hypertension (PH), using a large patient-level US-based electronic health record (EHR) database. METHODS: A gradient boosting model, XGBoost, was developed using data from Optum's US-based de-identified EHR dataset (2007-2019). PH and disease control adult patients were identified using diagnostic, treatment and procedure codes and were randomly split into the training (90%) or test set (10%). Model features included patient demographics, physician visits, diagnoses, procedures, prescriptions, and laboratory test results. SHapley Additive exPlanations values were used to determine feature importance. RESULTS: We identified 11,279,478 control and 115,822 PH patients (mean age, respectively: 62 and 68 years, both 53% female). The final model used 165 features, with the most important predictive features including diagnosis of heart failure, shortness of breath and atrial fibrillation. The model predicted PH with an area under the receiver operating characteristic curve (AUROC) of 0.92. AUROC remained above 0.80 for the prediction of PH up to and beyond 18 months before diagnosis. Among the PH patients, we also identified 955 pulmonary arterial hypertension (PAH) and 1432 chronic thromboembolic pulmonary hypertension (CTEPH) patients, and the range of AUROCs obtained for these cohorts was 0.79-0.90 and 0.87-0.96, respectively. CONCLUSIONS: This model to detect PH based on patients' EHR records is viable and performs well in subgroups of PAH and CTEPH patients. This approach has the potential to improve patient outcomes by reducing diagnostic delay in PH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Adult , Humans , Female , Middle Aged , Aged , Male , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/epidemiology , Electronic Health Records , Delayed Diagnosis , Machine Learning , Familial Primary Pulmonary Hypertension
11.
Front Pediatr ; 10: 933266, 2022.
Article in English | MEDLINE | ID: mdl-36582513

ABSTRACT

Psychosocial and stress-related factors (PSFs), defined as internal or external stimuli that induce biological changes, are potentially modifiable factors and accessible targets for interventions that are associated with adverse pregnancy outcomes (APOs). Although individual APOs have been shown to be connected to PSFs, they are biologically interconnected, relatively infrequent, and therefore challenging to model. In this context, multi-task machine learning (MML) is an ideal tool for exploring the interconnectedness of APOs on the one hand and building on joint combinatorial outcomes to increase predictive power on the other hand. Additionally, by integrating single cell immunological profiling of underlying biological processes, the effects of stress-based therapeutics may be measurable, facilitating the development of precision medicine approaches. Objectives: The primary objectives were to jointly model multiple APOs and their connection to stress early in pregnancy, and to explore the underlying biology to guide development of accessible and measurable interventions. Materials and Methods: In a prospective cohort study, PSFs were assessed during the first trimester with an extensive self-filled questionnaire for 200 women. We used MML to simultaneously model, and predict APOs (severe preeclampsia, superimposed preeclampsia, gestational diabetes and early gestational age) as well as several risk factors (BMI, diabetes, hypertension) for these patients based on PSFs. Strongly interrelated stressors were categorized to identify potential therapeutic targets. Furthermore, for a subset of 14 women, we modeled the connection of PSFs to the maternal immune system to APOs by building corresponding ML models based on an extensive single cell immune dataset generated by mass cytometry time of flight (CyTOF). Results: Jointly modeling APOs in a MML setting significantly increased modeling capabilities and yielded a highly predictive integrated model of APOs underscoring their interconnectedness. Most APOs were associated with mental health, life stress, and perceived health risks. Biologically, stressors were associated with specific immune characteristics revolving around CD4/CD8 T cells. Immune characteristics predicted based on stress were in turn found to be associated with APOs. Conclusions: Elucidating connections among stress, multiple APOs simultaneously, and immune characteristics has the potential to facilitate the implementation of ML-based, individualized, integrative models of pregnancy in clinical decision making. The modifiable nature of stressors may enable the development of accessible interventions, with success tracked through immune characteristics.

12.
Pulm Circ ; 12(1): e12013, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35506114

ABSTRACT

Background: Pulmonary embolisms (PE) are life-threatening medical events, and early identification of patients experiencing a PE is essential to optimizing patient outcomes. Current tools for risk stratification of PE patients are limited and unable to predict PE events before their occurrence. Objective: We developed a machine learning algorithm (MLA) designed to identify patients at risk of PE before the clinical detection of onset in an inpatient population. Materials and Methods: Three machine learning (ML) models were developed on electronic health record data from 63,798 medical and surgical inpatients in a large US medical center. These models included logistic regression, neural network, and gradient boosted tree (XGBoost) models. All models used only routinely collected demographic, clinical, and laboratory information as inputs. All were evaluated for their ability to predict PE at the first time patient vital signs and lab measures required for the MLA to run were available. Performance was assessed with regard to the area under the receiver operating characteristic (AUROC), sensitivity, and specificity. Results: The model trained using XGBoost demonstrated the strongest performance for predicting PEs. The XGBoost model obtained an AUROC of 0.85, a sensitivity of 81%, and a specificity of 70%. The neural network and logistic regression models obtained AUROCs of 0.74 and 0.67, sensitivity of 81% and 81%, and specificity of 44% and 35%, respectively. Conclusions: This algorithm may improve patient outcomes through earlier recognition and prediction of PE, enabling earlier diagnosis and treatment of PE.

13.
PLoS One ; 16(3): e0248128, 2021.
Article in English | MEDLINE | ID: mdl-33730088

ABSTRACT

BACKGROUND: The COVID-19 pandemic remains a significant global threat. However, despite urgent need, there remains uncertainty surrounding best practices for pharmaceutical interventions to treat COVID-19. In particular, conflicting evidence has emerged surrounding the use of hydroxychloroquine and azithromycin, alone or in combination, for COVID-19. The COVID-19 Evidence Accelerator convened by the Reagan-Udall Foundation for the FDA, in collaboration with Friends of Cancer Research, assembled experts from the health systems research, regulatory science, data science, and epidemiology to participate in a large parallel analysis of different data sets to further explore the effectiveness of these treatments. METHODS: Electronic health record (EHR) and claims data were extracted from seven separate databases. Parallel analyses were undertaken on data extracted from each source. Each analysis examined time to mortality in hospitalized patients treated with hydroxychloroquine, azithromycin, and the two in combination as compared to patients not treated with either drug. Cox proportional hazards models were used, and propensity score methods were undertaken to adjust for confounding. Frequencies of adverse events in each treatment group were also examined. RESULTS: Neither hydroxychloroquine nor azithromycin, alone or in combination, were significantly associated with time to mortality among hospitalized COVID-19 patients. No treatment groups appeared to have an elevated risk of adverse events. CONCLUSION: Administration of hydroxychloroquine, azithromycin, and their combination appeared to have no effect on time to mortality in hospitalized COVID-19 patients. Continued research is needed to clarify best practices surrounding treatment of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19 Drug Treatment , Hydroxychloroquine/therapeutic use , Pandemics/prevention & control , Data Management/methods , Drug Therapy, Combination/methods , Female , Hospitalization , Humans , Male , SARS-CoV-2/drug effects
14.
Clin Appl Thromb Hemost ; 27: 1076029621991185, 2021.
Article in English | MEDLINE | ID: mdl-33625875

ABSTRACT

Deep venous thrombosis (DVT) is associated with significant morbidity, mortality, and increased healthcare costs. Standard scoring systems for DVT risk stratification often provide insufficient stratification of hospitalized patients and are unable to accurately predict which inpatients are most likely to present with DVT. There is a continued need for tools which can predict DVT in hospitalized patients. We performed a retrospective study on a database collected from a large academic hospital, comprised of 99,237 total general ward or ICU patients, 2,378 of whom experienced a DVT during their hospital stay. Gradient boosted machine learning algorithms were developed to predict a patient's risk of developing DVT at 12- and 24-hour windows prior to onset. The primary outcome of interest was diagnosis of in-hospital DVT. The machine learning predictors obtained AUROCs of 0.83 and 0.85 for DVT risk prediction on hospitalized patients at 12- and 24-hour windows, respectively. At both 12 and 24 hours before DVT onset, the most important features for prediction of DVT were cancer history, VTE history, and internal normalized ratio (INR). Improved risk stratification may prevent unnecessary invasive testing in patients for whom DVT cannot be ruled out using existing methods. Improved risk stratification may also allow for more targeted use of prophylactic anticoagulants, as well as earlier diagnosis and treatment, preventing the development of pulmonary emboli and other sequelae of DVT.


Subject(s)
Machine Learning/standards , Venous Thrombosis/genetics , Adolescent , Adult , Aged , Hospitalization , Humans , Male , Middle Aged , Risk Assessment , Risk Factors , Venous Thrombosis/pathology , Young Adult
15.
Front Neurol ; 12: 784250, 2021.
Article in English | MEDLINE | ID: mdl-35145468

ABSTRACT

BACKGROUND: Strokes represent a leading cause of mortality globally. The evolution of developing new therapies is subject to safety and efficacy testing in clinical trials, which operate in a limited timeframe. To maximize the impact of these trials, patient cohorts for whom ischemic stroke is likely during that designated timeframe should be identified. Machine learning may improve upon existing candidate identification methods in order to maximize the impact of clinical trials for stroke prevention and treatment and improve patient safety. METHODS: A retrospective study was performed using 41,970 qualifying patient encounters with ischemic stroke from inpatient visits recorded from over 700 inpatient and ambulatory care sites. Patient data were extracted from electronic health records and used to train and test a gradient boosted machine learning algorithm (MLA) to predict the patients' risk of experiencing ischemic stroke from the period of 1 day up to 1 year following the patient encounter. The primary outcome of interest was the occurrence of ischemic stroke. RESULTS: After training for optimization, XGBoost obtained a specificity of 0.793, a positive predictive value (PPV) of 0.194, and a negative predictive value (NPV) of 0.985. The MLA further obtained an area under the receiver operating characteristic (AUROC) of 0.88. The Logistic Regression and multilayer perceptron models both achieved AUROCs of 0.862. Among features that significantly impacted the prediction of ischemic stroke were previous stroke history, age, and mean systolic blood pressure. CONCLUSION: MLAs have the potential to more accurately predict the near risk of ischemic stroke within a 1-year prediction window for individuals who have been hospitalized. This risk stratification tool can be used to design clinical trials to test stroke prevention treatments in high-risk populations by identifying subjects who would be more likely to benefit from treatment.

16.
J Clin Med ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256141

ABSTRACT

Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been proposed, but evidence supporting their use is limited. A machine learning algorithm was developed in order to identify a subpopulation of COVID-19 patients for whom hydroxychloroquine was associated with improved survival; this population might be relevant for study in a clinical trial. A pragmatic trial was conducted at six United States hospitals. We enrolled COVID-19 patients that were admitted between 10 March and 4 June 2020. Treatment was not randomized. The study endpoint was mortality; discharge was a competing event. Hazard ratios were obtained on the entire population, and on the subpopulation indicated by the algorithm as suitable for treatment. A total of 290 patients were enrolled. In the subpopulation that was identified by the algorithm, hydroxychloroquine was associated with a statistically significant (p = 0.011) increase in survival (adjusted hazard ratio 0.29, 95% confidence interval (CI) 0.11-0.75). Adjusted survival among the algorithm indicated patients was 82.6% in the treated arm and 51.2% in the arm not treated. No association between treatment and mortality was observed in the general population. A 31% increase in survival at the end of the study was observed in a population of COVID-19 patients that were identified by a machine learning algorithm as having a better outcome with hydroxychloroquine treatment. Precision medicine approaches may be useful in identifying a subpopulation of COVID-19 patients more likely to be proven to benefit from hydroxychloroquine treatment in a clinical trial.

17.
JMIR Public Health Surveill ; 6(4): e22400, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33090117

ABSTRACT

BACKGROUND: Racial disparities in health care are well documented in the United States. As machine learning methods become more common in health care settings, it is important to ensure that these methods do not contribute to racial disparities through biased predictions or differential accuracy across racial groups. OBJECTIVE: The goal of the research was to assess a machine learning algorithm intentionally developed to minimize bias in in-hospital mortality predictions between white and nonwhite patient groups. METHODS: Bias was minimized through preprocessing of algorithm training data. We performed a retrospective analysis of electronic health record data from patients admitted to the intensive care unit (ICU) at a large academic health center between 2001 and 2012, drawing data from the Medical Information Mart for Intensive Care-III database. Patients were included if they had at least 10 hours of available measurements after ICU admission, had at least one of every measurement used for model prediction, and had recorded race/ethnicity data. Bias was assessed through the equal opportunity difference. Model performance in terms of bias and accuracy was compared with the Modified Early Warning Score (MEWS), the Simplified Acute Physiology Score II (SAPS II), and the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE). RESULTS: The machine learning algorithm was found to be more accurate than all comparators, with a higher sensitivity, specificity, and area under the receiver operating characteristic. The machine learning algorithm was found to be unbiased (equal opportunity difference 0.016, P=.20). APACHE was also found to be unbiased (equal opportunity difference 0.019, P=.11), while SAPS II and MEWS were found to have significant bias (equal opportunity difference 0.038, P=.006 and equal opportunity difference 0.074, P<.001, respectively). CONCLUSIONS: This study indicates there may be significant racial bias in commonly used severity scoring systems and that machine learning algorithms may reduce bias while improving on the accuracy of these methods.


Subject(s)
Forecasting/methods , Hospital Mortality , Machine Learning/standards , APACHE , Adult , Aged , Algorithms , Cohort Studies , Early Warning Score , Electronic Health Records/statistics & numerical data , Female , Humans , Machine Learning/statistics & numerical data , Male , Middle Aged , Retrospective Studies , Simplified Acute Physiology Score
18.
Ann Med Surg (Lond) ; 59: 207-216, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33042536

ABSTRACT

RATIONALE: Prediction of patients at risk for mortality can help triage patients and assist in resource allocation. OBJECTIVES: Develop and evaluate a machine learning-based algorithm which accurately predicts mortality in COVID-19, pneumonia, and mechanically ventilated patients. METHODS: Retrospective study of 53,001 total ICU patients, including 9166 patients with pneumonia and 25,895 mechanically ventilated patients, performed on the MIMIC dataset. An additional retrospective analysis was performed on a community hospital dataset containing 114 patients positive for SARS-COV-2 by PCR test. The outcome of interest was in-hospital patient mortality. RESULTS: When trained and tested on the MIMIC dataset, the XGBoost predictor obtained area under the receiver operating characteristic (AUROC) values of 0.82, 0.81, 0.77, and 0.75 for mortality prediction on mechanically ventilated patients at 12-, 24-, 48-, and 72- hour windows, respectively, and AUROCs of 0.87, 0.78, 0.77, and 0.734 for mortality prediction on pneumonia patients at 12-, 24-, 48-, and 72- hour windows, respectively. The predictor outperformed the qSOFA, MEWS and CURB-65 risk scores at all prediction windows. When tested on the community hospital dataset, the predictor obtained AUROCs of 0.91, 0.90, 0.86, and 0.87 for mortality prediction on COVID-19 patients at 12-, 24-, 48-, and 72- hour windows, respectively, outperforming the qSOFA, MEWS and CURB-65 risk scores at all prediction windows. CONCLUSIONS: This machine learning-based algorithm is a useful predictive tool for anticipating patient mortality at clinically useful timepoints, and is capable of accurate mortality prediction for mechanically ventilated patients as well as those diagnosed with pneumonia and COVID-19.

19.
Comput Biol Med ; 124: 103949, 2020 09.
Article in English | MEDLINE | ID: mdl-32798922

ABSTRACT

BACKGROUND: Currently, physicians are limited in their ability to provide an accurate prognosis for COVID-19 positive patients. Existing scoring systems have been ineffective for identifying patient decompensation. Machine learning (ML) may offer an alternative strategy. A prospectively validated method to predict the need for ventilation in COVID-19 patients is essential to help triage patients, allocate resources, and prevent emergency intubations and their associated risks. METHODS: In a multicenter clinical trial, we evaluated the performance of a machine learning algorithm for prediction of invasive mechanical ventilation of COVID-19 patients within 24 h of an initial encounter. We enrolled patients with a COVID-19 diagnosis who were admitted to five United States health systems between March 24 and May 4, 2020. RESULTS: 197 patients were enrolled in the REspirAtory Decompensation and model for the triage of covid-19 patients: a prospective studY (READY) clinical trial. The algorithm had a higher diagnostic odds ratio (DOR, 12.58) for predicting ventilation than a comparator early warning system, the Modified Early Warning Score (MEWS). The algorithm also achieved significantly higher sensitivity (0.90) than MEWS, which achieved a sensitivity of 0.78, while maintaining a higher specificity (p < 0.05). CONCLUSIONS: In the first clinical trial of a machine learning algorithm for ventilation needs among COVID-19 patients, the algorithm demonstrated accurate prediction of the need for mechanical ventilation within 24 h. This algorithm may help care teams effectively triage patients and allocate resources. Further, the algorithm is capable of accurately identifying 16% more patients than a widely used scoring system while minimizing false positive results.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Machine Learning , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/physiopathology , Adult , Aged , Aged, 80 and over , Algorithms , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/statistics & numerical data , Computational Biology , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/therapy , Prognosis , Prospective Studies , Respiration, Artificial , Respiratory Insufficiency/therapy , SARS-CoV-2 , Sensitivity and Specificity , Triage/methods , Triage/statistics & numerical data , United States/epidemiology , COVID-19 Drug Treatment
20.
Nat Med ; 25(5): 792-804, 2019 05.
Article in English | MEDLINE | ID: mdl-31068711

ABSTRACT

Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiological profiling and may provide important tools for precision health. We explored the ability of deep longitudinal profiling to make health-related discoveries, identify clinically relevant molecular pathways and affect behavior in a prospective longitudinal cohort (n = 109) enriched for risk of type 2 diabetes mellitus. The cohort underwent integrative personalized omics profiling from samples collected quarterly for up to 8 years (median, 2.8 years) using clinical measures and emerging technologies including genome, immunome, transcriptome, proteome, metabolome, microbiome and wearable monitoring. We discovered more than 67 clinically actionable health discoveries and identified multiple molecular pathways associated with metabolic, cardiovascular and oncologic pathophysiology. We developed prediction models for insulin resistance by using omics measurements, illustrating their potential to replace burdensome tests. Finally, study participation led the majority of participants to implement diet and exercise changes. Altogether, we conclude that deep longitudinal profiling can lead to actionable health discoveries and provide relevant information for precision health.


Subject(s)
Big Data , Diabetes Mellitus, Type 2/etiology , Precision Medicine/statistics & numerical data , Adult , Aged , Cardiovascular Diseases/etiology , Cohort Studies , Exome , Female , Gastrointestinal Microbiome , Humans , Insulin Resistance , Longitudinal Studies , Male , Metabolome , Middle Aged , Models, Biological , Risk Factors , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...