Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Biol Interact ; 398: 111082, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38825055

ABSTRACT

The study investigates the effect of the presence of a chlorine atom in the 2'-hydroxychalcone molecule on its interaction with model lipid membranes, in order to discern its potential pharmacological activity. Five chlorine derivatives of 2'-hydroxychalcone were synthesized and evaluated against liposomes composed of POPC and enriched with cationic (DOTAP) or anionic (POPG) lipids. The physicochemical properties of the compounds were initially simulated using SwissAdame software, revealing high lipophilicity (ilogP values: 2.79-2.90). The dynamic light scattering analysis of liposomes showed that chloro chalcones induce minor changes in the diameter of liposomes of different surface charges. Fluorescence quenching assays with a TMA-DPH probe demonstrated the strong ability of the compounds to interact with the lipid bilayer, with varying quenching capacities based on chlorine atom position. FTIR studies indicated alterations in carbonyl, phosphate, and choline groups, suggesting a transition area localization rather than deep penetration into the hydrocarbon chains. Additionally, dipole potential reduction was observed in POPC and POPC-POPG membranes, particularly pronounced by derivatives with a chlorine atom in the B ring. Antibacterial and antibiofilm assays revealed enhanced activity of derivatives with a chlorine atom compared to 2'-hydroxychalcone, especially against Gram-positive bacteria. The MIC and MBIC50 values showed increased efficacy in the presence of chlorine with 3'-5'-dichloro-2'-hydroxychalcone demonstrating optimal antimicrobial and antibiofilm activity. Furthermore, antiproliferative assays against breast cancer cell lines indicated higher activity of B-ring chlorine derivatives, particularly against MDA-MB-231 cells. In general, the presence of a chlorine atom in 2'-hydroxychalcone improves its pharmacological potential, with derivatives showing improved antimicrobial, antibiofilm, and antiproliferative activities, especially against aggressive breast cancer cell lines. These findings underscore the importance of molecular structure in modulating biological activity and highlight chalcones with a chlorine as promising candidates for further drug development studies.


Subject(s)
Antineoplastic Agents , Chalcones , Chlorine , Liposomes , Humans , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Liposomes/chemistry , Chlorine/chemistry , Cell Line, Tumor , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Cell Membrane/drug effects , Phosphatidylcholines/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
2.
Bioorg Chem ; 140: 106782, 2023 11.
Article in English | MEDLINE | ID: mdl-37659149

ABSTRACT

The study investigated the structure-activity relationship of newly synthesized dye-linker-macrocycle (DLM) conjugates and the effect of each component on various biological properties, including cytotoxicity, cellular uptake, intracellular localization, interaction with DNA and photodynamic effects. The conjugates were synthesized by combining 1,8-naphthalimide and thioxanthone dyes with 1,4,7,10-tetraazacyclododecane (cyclen) and 1-aza-12-crown-4 (1A12C4) using alkyl linkers of different lengths. The results revealed significant differences in biological activity among the various series of conjugates. Particularly, 1A12C4 conjugates exhibited notably higher cytotoxicity compared to cyclen conjugates. Conjugation with 1A12C4 proved to be an effective strategy for increasing cellular uptake and cytotoxicity of small-molecule conjugates. In addition, the results highlighted the critical role of linker length in modulating the biological activity of DLM conjugates. It became clear that the choice of each component (dye, macrocycle and linker) could significantly alter the biological activity of the conjugates.


Subject(s)
Antineoplastic Agents , Cyclams , Biological Transport , Antineoplastic Agents/pharmacology , Coloring Agents
3.
Int J Mol Sci ; 23(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35269760

ABSTRACT

Hexokinase 2 (HK2), an enzyme of the sugar kinase family, plays a dual role in glucose metabolism and mediating cancer cell apoptosis, making it an attractive target for cancer therapy. While positive HK2 expression usually promotes cancer cells survival, silencing or inhibiting this enzyme has been found to improve the effectiveness of anti-cancer drugs and even result in cancer cell death. Previously, benitrobenrazide (BNBZ) was characterized as a potent HK2 inhibitor with good anti-cancer activity in mice, but the effect of its trihydroxy moiety (pyrogallol-like) on inhibitory activity and some cellular functions has not been fully understood. Therefore, the main goal of this study was to obtain the parent BNBZ (2a) and its three dihydroxy derivatives 2b-2d and to conduct additional physicochemical and biological investigations. The research hypothesis assumed that the HK2 inhibitory activity of the tested compounds depends on the number and location of hydroxyl groups in their chemical structure. Among many studies, the binding affinity to HK2 was determined and two human liver cancer cell lines, HepG2 and HUH7, were used and exposed to chemicals at various times: 24 h, 48 h and 72 h. The study showed that the modifications to the structures of the new BNBZ derivatives led to significant changes in their activities. It was also found that these compounds tend to aggregate and exhibit toxic effects. They were found to contribute to: (a) DNA damage, (b) increased ROS production, and (c) disruption of cell cycle progression. It was observed that, HepG2, occurred much more sensitive to the tested chemicals than the HUH7 cells; However, regardless of the used cell line it seems that the increase in the expression of HK2 in cancer cells compared to normal cells which have HK2 at a very low level, is a serious obstacle in anti-cancer therapy and efforts to find the effective inhibitors of this enzyme should be intensified.


Subject(s)
Antineoplastic Agents , Liver Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line , Cell Line, Tumor , Glycolysis , Hexokinase/metabolism , Liver Neoplasms/drug therapy , Mice
4.
Int J Mol Sci ; 22(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34502416

ABSTRACT

In spite of the continuous improvement in our knowledge of the nature of cancer, the causes of its formation and the development of new treatment methods, our knowledge is still incomplete. A key issue is the difference in metabolism between normal and cancer cells. The features that distinguish cancer cells from normal cells are the increased proliferation and abnormal differentiation and maturation of these cells, which are due to regulatory changes in the emerging tumour. Normal cells use oxidative phosphorylation (OXPHOS) in the mitochondrion as a major source of energy during division. During OXPHOS, there are 36 ATP molecules produced from one molecule of glucose, in contrast to glycolysis which provides an ATP supply of only two molecules. Although aerobic glucose metabolism is more efficient, metabolism based on intensive glycolysis provides intermediate metabolites necessary for the synthesis of nucleic acids, proteins and lipids, which are in constant high demand due to the intense cell division in cancer. This is the main reason why the cancer cell does not "give up" on glycolysis despite the high demand for energy in the form of ATP. One of the evolving trends in the development of anti-cancer therapies is to exploit differences in the metabolism of normal cells and cancer cells. Currently constructed therapies, based on cell metabolism, focus on the attempt to reprogram the metabolic pathways of the cell in such a manner that it becomes possible to stop unrestrained proliferation.


Subject(s)
Adenosine Triphosphate/metabolism , Glucose/metabolism , Glycolysis , Mitochondria/metabolism , Neoplasms/metabolism , Oxidative Phosphorylation , Animals , Humans , Mitochondria/pathology , Neoplasms/pathology
5.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804163

ABSTRACT

Autophagy can play a double role in cancerogenesis: it can either inhibit further development of the disease or protect cells, causing stimulation of tumour growth. This phenomenon is called "autophagy paradox", and is characterised by the features that the autophagy process provides the necessary substrates for biosynthesis to meet the cell's energy needs, and that the over-programmed activity of this process can lead to cell death through apoptosis. The fight against cancer is a difficult process due to high levels of resistance to chemotherapy and radiotherapy. More and more research is indicating that autophagy may play a very important role in the development of resistance by protecting cancer cells, which is why autophagy in cancer therapy can act as a "double-edged sword". This paper attempts to analyse the influence of autophagy and cancer stem cells on tumour development, and to compare new therapeutic strategies based on the modulation of these processes.


Subject(s)
Autophagy/genetics , Carcinogenesis/genetics , Neoplasms/drug therapy , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis/radiation effects , Autophagy/drug effects , Autophagy/radiation effects , Drug Resistance, Neoplasm/genetics , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/radiotherapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
6.
Molecules ; 25(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158261

ABSTRACT

The biological properties of doxyl stearate nitroxides (DSs): 5-DS, Met-12-DS, and 16-DS, commonly used as spin probes, have not been explored in much detail so far. Furthermore, the influence of DSs on the cellular changes induced by the anticancer drug doxorubicin (DOX) has not yet been investigated. Therefore, we examined the cytotoxicity of DSs and their ability to induce cell death and to influence on fluidity and lipid peroxidation (LPO) in the plasma membrane of immortalised B14 fibroblasts, used as a model neoplastic cells, susceptible to DOX-induced changes. The influence of DSs on DOX toxicity was also investigated and compared with that of a natural reference antioxidant α-Tocopherol. By employing the trypan blue exclusion test and double fluorescent staining, we found a significant level of cytotoxicity for DSs and showed that their ability to induce apoptosis and modify plasma membrane fluidity (measured fluorimetrically) is more potent than for α-Tocopherol. The most cytotoxic nitroxide was 5-DS. The electron paramagnetic resonance (EPR) measurements revealed that 5-DS was reduced in B14 cells at the fastest and Met-12-DS at the slowest rate. In the presence of DOX, DSs were reduced slower than alone. The investigated compounds, administered with DOX, enhanced DOX-induced cell death and demonstrated concentration-dependent biphasic influence on membrane fluidity. A-Tocopherol showed weaker effects than DSs, regardless the mode of its application-alone or with DOX. High concentrations of α-Tocopherol and DSs decreased DOX-induced LPO. Substantial cytotoxicity of the DSs suggests that they should be used more carefully in the investigations performed on sensitive cells. Enhancement of DOX toxicity by DSs showed their potential to act as chemosensitizers of cancer cells to anthracycline chemotherapy.


Subject(s)
Cell Membrane/metabolism , Doxorubicin/adverse effects , Fibroblasts/metabolism , Lipid Peroxidation/drug effects , Nitrogen Oxides , Spin Labels/chemical synthesis , Animals , Cell Line , Cricetulus , Doxorubicin/pharmacology , Membrane Fluidity/drug effects , Nitrogen Oxides/chemical synthesis , Nitrogen Oxides/chemistry , Nitrogen Oxides/pharmacology , alpha-Tocopherol/chemistry , alpha-Tocopherol/pharmacology
7.
Int J Mol Sci ; 20(8)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010130

ABSTRACT

With the aim of contributing to the knowledge about their potential therapeutic activity, we determined the biological activities of cyanidin and its selected O-glycosides in relation to erythrocytes (RBCs) and human dermal vascular endothelial cells (HMEC-1). Furthermore, on the basis of changes in the physical/functional properties of the cells, the structure-activity relationships of the compounds were determined. Concerning erythrocytes, we analyzed the antioxidant activity of the compounds and their impact on the RBCs' shape and transmembrane potential. The compounds' cytotoxic activity, ability to modulate apoptosis, cell cycle, and intracellular ROS generation, as well as inhibitory activity against AAPH-inducted oxidative stress, were determined in relation to HMEC-1 cells. We demonstrated that biological activity of cyanidin and its O-glycosides strongly depends on the number and type of sugar substituents, and varies depending on the extracellular environment and type of cells. The compounds are practically non-cytotoxic, and do not induce apoptosis or disturb the progression of the cell cycle. Additionally, the compounds alter the shape of RBCs, but they do not affect their transmembrane potential. They effectively protect erythrocytes against free radicals and affect intracellular reactive oxygen spices (ROS) generation under physiological and AAPH-induced oxidative stress conditions. Our results suggest a potential beneficial effect of cyanidin on the cardiovascular system.


Subject(s)
Anthocyanins/chemistry , Anthocyanins/metabolism , Endothelial Cells/metabolism , Erythrocytes/metabolism , Microvessels/cytology , Animals , Apoptosis , Cell Cycle , Cell Line , Cell Shape , Cell Survival , Cytoprotection , Erythrocytes/ultrastructure , Glycosylation , Hemolysis , Humans , Membrane Potentials , Oxidative Stress , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Swine
8.
Molecules ; 22(12)2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29240697

ABSTRACT

The synthesis of four cymantrene-5-fluorouracil derivatives (1-4) and two cymantrene-adenine derivatives (5 and 6) is reported. All of the compounds were characterized by spectroscopic methods and the crystal structure of two derivatives (1 and 6), together with the previously described cymantrene-adenine compound C was determined by X-ray crystallography. While the compounds 1 and 6 crystallized in the triclinic P-1 space group, compound C crystallized in the monoclinic P21/m space group. The newly synthesized compounds 1-6 were tested together with the two previously described cymantrene derivatives B and C for their in vitro antiproliferative activity against seven cancer cell lines (MCF-7, MCF-7/DX, MDA-MB-231, SKOV-3, A549, HepG2m and U-87-MG), five bacterial strains Staphylococcus aureus (methicillin-sensitive, methicillin-resistant and vancomycin-intermediate strains), Staphylococcus epidermidis, and Escherichia coli, including clinical isolates of S. aureus and S. epidermidis, as well as against the protozoan parasite Trypanosoma brucei. The most cytotoxic compounds were derivatives 2 and C for A549 and SKOV-3 cancer cell lines, respectively, with 50% growth inhibition (IC50) values of about 7 µM. The anticancer activity of the cymantrene compounds was determined to be due to their ability to induce oxidative stress and to trigger apoptosis and autophagy in cancer cells. Three derivatives (1, 4 and 5) displayed promising antitrypanosomal activity, with GI50 values in the low micromolar range (3-4 µM). The introduction of the 5-fluorouracil moiety in 1 enhanced the trypanocidal activity when compared to the activity previously reported for the corresponding uracil derivative. The antibacterial activity of cymantrene compounds 1 and C was within the range of 8-64 µg/mL and seemed to be the result of induced cell shrinking.


Subject(s)
Adenine/analogs & derivatives , Adenine/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Fluorouracil/analogs & derivatives , Fluorouracil/chemical synthesis , Organometallic Compounds/chemical synthesis , Trypanocidal Agents/chemical synthesis , Adenine/pharmacology , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Fluorouracil/pharmacology , Humans , Organometallic Compounds/pharmacology , Oxidative Stress/drug effects , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Structure-Activity Relationship , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects
9.
ChemMedChem ; 11(19): 2171-2187, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27561129

ABSTRACT

The in vitro anticancer activity of the dinuclear trithiolato-bridged arene ruthenium complex diruthenium-1 (DiRu-1) was evaluated against a panel of human cancer cell lines used as in vitro models for hepatocellular carcinoma (HepG2 cells), estrogen-responsive breast adenocarcinoma (MCF-7 cells), and triple-negative breast adenocarcinoma (MDA-MB-231 cells). DiRu-1 is highly cytotoxic to these cell lines, demonstrating half-maximal inhibitory concentrations (IC50 ) in the low-nanomolar range (77±1.4 to 268.2±4.4 nm). The main molecular mechanisms responsible for the high cytotoxicity of DiRu-1 against the most responsive MCF-7 cell line (IC50 =77±1.4 nm) were investigated on the basis of the capacity of DiRu-1 to induce oxidative stress, apoptosis, and DNA damage, and to inhibit the cell cycle and proliferation. The results show that DiRu-1 triggers caspase-dependent apoptosis in MCF-7 cells on both the intrinsic and extrinsic pathways. Moreover, the Ru complex also causes necrosis, mitotic catastrophe, and autophagy. DiRu-1 increases the intracellular levels of reactive oxygen species (ROS), which play a significant role in its cytotoxicity and pro-apoptotic activity. An important mechanism of the anticancer activity of DiRu-1 appears to be the induction of DNA lesions, mainly due to apoptotic DNA fragmentation and cell-cycle arrest at the G2 /M checkpoint. These changes are correlated with the concentration of DiRu-1, the duration of the cell treatment, and the post-treatment time.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , DNA Damage , DNA Repair , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
10.
Plant Cell Rep ; 34(6): 905-17, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25652240

ABSTRACT

KEY MESSAGE: In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.


Subject(s)
Lupinus/enzymology , Mitogen-Activated Protein Kinases/metabolism , Pisum sativum/enzymology , Solanum lycopersicum/enzymology , Vicia faba/enzymology , Lupinus/drug effects , Solanum lycopersicum/drug effects , Meristem/enzymology , Microtubules/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/immunology , Pisum sativum/drug effects , Phosphorylation , Plant Roots/enzymology , Pyrazoles/pharmacology , Pyridazines/pharmacology , Species Specificity , Vicia faba/drug effects
11.
Postepy Hig Med Dosw (Online) ; 64: 568-81, 2010 Nov 19.
Article in Polish | MEDLINE | ID: mdl-21109709

ABSTRACT

Docetaxel (Taxotere), a new semisynthetic taxoid, is a mitotic inhibitor, widely used in monotherapy or in combination with other anticancer drugs against many types of cancer. The structure and dynamics of microtubules as the main target for docetaxel activity inside the cell and the taxane-binding site on ß-tubulin are discussed. Microtubules are highly dynamic assemblies of α- and ß-tubulin. They readily polymerize and depolymerize in cells and these dynamic behaviours are crucial to cell mitosis. Microtubule instability is attributed to their capability to hydrolyze GTP to GDP, which causes their depolymerization. Addition of new α-, ß-tubulin heterodimer bound to GTP leads to tubulin polymerization, which increases the length of the microtubule. Docetaxel alters the polymerization dynamics of microtubules, which causes blockage of cell mitosis, and consequently induces apoptotic and non-apoptotic cell death. Docetaxel specifically acts on the S, M and G2 phases of the cell cycle. This paper reviews the current state of knowledge related to the molecular mechanisms of docetaxel action on the cell cycle and microtubule dynamics. In addition, a brief survey of the present state of research on the new generation (2nd and 3rd) of taxanes is presented.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Microtubules/drug effects , Neoplasms/drug therapy , Taxoids/pharmacology , Docetaxel , Humans
SELECTION OF CITATIONS
SEARCH DETAIL