Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 234: 115880, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32070503

ABSTRACT

Assemblies of carbohydrate polymers are important in a number of applications and improved methods for their fabrication are increasingly sought after. Herein, we report that an aqueous two-phase system of alginate (Alg) and hydroxypropyl cellulose with poly(methacrylic acid) graft chains (HPC-PMA) facilitated the assembly of Alg/HPC-PMA in both phases. Dynamically formed filamentous domains in a flow field were gelled by rapid complexation with cationic polyethyleneimine (PEI). The fabricated HPC-PMA gel filament morphologies can be switched between the bundled and dissociated gel filaments using a co-flow microfluidic device in response to the amount of supplied PEI crosslinker. Excess complexation of PEI contributes to the fabrication of cationic gel filaments; this contribution results in a dissociated structure due to electrostatic repulsion. In contrast, an appropriate amount of PEI resulted in a bundle structure. The proposed spinning method avoids the risk of nozzle clogging, and enables the one-step spinning of multiple gel filaments.


Subject(s)
Cellulose/chemical synthesis , Ethers/chemical synthesis , Polymethacrylic Acids/chemistry , Thermodynamics , Cellulose/chemistry , Ethers/chemistry , Gels/chemical synthesis , Gels/chemistry , Ions/chemistry , Particle Size , Surface Properties
2.
Polymers (Basel) ; 11(6)2019 May 28.
Article in English | MEDLINE | ID: mdl-31141918

ABSTRACT

Reversible Diels-Alder (DA) type networks were prepared from furan and maleimide monomers of different structure and functionality. The factors controlling the dynamic network formation and their properties were discussed. Evolution of structure during both dynamic nonequilibrium and isothermal equilibrium network formation/breaking was followed by monitoring the modulus and conversion of the monomer. The gelation, postgel growth, and properties of the thermoreversible networks from tetrafunctional furan (F4) and different bismaleimides (M2) were controlled by the structure of the maleimide monomer. The substitution of maleimides with alkyl (hexamethylene bismaleimide), aromatic (diphenyl bismaleimide), and polyether substituents affects differently the kinetics and thermodynamics of the thermoreversible DA reaction, and thereby the formation of dynamic networks. The gel-point temperature was tuned in the range Tgel = 97-122 °C in the networks of the same functionality (F4-M2) with different maleimide structure. Theory of branching processes was used to predict the structure development during formation of the dynamic networks and the reasonable agreement with the experiment was achieved. The experimentally inaccessible information on the sol fraction in the reversible network was received by applying the theory. Based on the acquired results, the proper structure of a self-healing network was designed.

3.
Soft Matter ; 13(6): 1244-1256, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28117862

ABSTRACT

The cryopolymerization and formation of a macroporous poly(N-isopropylacrylamide) (PNIPA)/clay cryogel were investigated. The mechanism of the cryopolymerization and cryogel formation was elucidated. Two processes, cryostructuration and cryopolymerization, proceed simultaneously and their relative rates determine the structure evolution and the cryogel morphology - porosity. The cryostructuration in the PNIPA/clay system during freezing, controlled by the freezing temperature and the rate of cooling, includes both water and NIPA crystallization, formation of a highly concentrated non-frozen liquid phase (NFLP) and clay aggregation. The rate of cryopolymerization and gelation is governed by the following effects: by a low polymerization temperature and after freezing, by the high cryoconcentration and a steric confinement, manifested by a reduced reagent mobility. Moreover, it depends on the cooling rate and the evolution of cryostructuration. The progress of cryostructuration and cryopolymerization during freezing was described and experimentally proved step by step. Both the phase development during freezing and the progress of cryopolymerization including gelation were monitored in situ by NMR, DSC, chemorheology and SAXS. The morphology and porosity of the cryogels were characterized by SEM and TEM.

4.
Soft Matter ; 11(48): 9291-306, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26428943

ABSTRACT

The formation of the hydrogel poly(N-isopropylacrylamide)-clay (LAPONITE®) by redox polymerization was investigated, and the main factors governing the gel build-up were determined. The significant effect of the redox initiating system ammonium peroxodisulfate (APS) and tetramethylethylenediamine (TEMED) on gel formation and structure was established, making it possible to control the structure of the gel. Moreover, the pre-reaction stage involving the quality of the clay exfoliation in an aqueous suspension and the interaction of reaction components with the clay play a role in controlling the polymerization and gel structure. The molecular and phase structure evolution during polymerization was followed in situ by the following independent techniques: Fourier transform infrared spectroscopy (FTIR), chemorheology, small-angle X-ray scattering (SAXS) and ultraviolet-visible spectroscopy (UV/Vis). The combination of these methods enabled us to describe in detail particular progress stages during the gel formation and determine the correlation of the corresponding processes on a time and conversion scale. The mechanism of gel formation was refined based on these experimental results.

5.
J Colloid Interface Sci ; 447: 77-84, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25700213

ABSTRACT

The ether-functionalized imidazolium ionic liquids (IL) applied in the silica sol-gel process demonstrated a defined coordination potential. These IL display the capacity to control the system organization from the reactions' first moments through a dynamic system-assembling ability, being the sum of ionic and physical interactions, i.e. Coulomb forces, H-bonding and London forces. The initial hydrolysis steps of tetraethyl orthosilicate (TEOS) in the presence of these IL were followed by Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS), both in time-resolved experiments, in an attempt to correlate the structuring and the bonding dynamics of these systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...