Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Gels ; 10(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38786233

ABSTRACT

The bioprinting of high-concentrated collagen bioinks is a promising technology for tissue engineering and regenerative medicine. Collagen is a widely used biomaterial for bioprinting because of its natural abundance in the extracellular matrix of many tissues and its biocompatibility. High-concentrated collagen hydrogels have shown great potential in tissue engineering due to their favorable mechanical and structural properties. However, achieving high cell proliferation rates within these hydrogels remains a challenge. In static cultivation, the volume of the culture medium is changed once every few days. Thus, perfect perfusion is not achieved due to the relative increase in metabolic concentration and no medium flow. Therefore, in our work, we developed a culture system in which printed collagen bioinks (collagen concentration in hydrogels of 20 and 30 mg/mL with a final concentration of 10 and 15 mg/mL in bioink) where samples flow freely in the culture medium, thus enhancing the elimination of nutrients and metabolites of cells. Cell viability, morphology, and metabolic activity (MTT tests) were analyzed on collagen hydrogels with a collagen concentration of 20 and 30 mg/mL in static culture groups without medium exchange and with active medium perfusion; the influence of pure growth culture medium and smooth muscle cells differentiation medium was next investigated. Collagen isolated from porcine skins was used; every batch was titrated to optimize the pH of the resulting collagen to minimize the difference in production batches and, therefore, the results. Active medium perfusion significantly improved cell viability and activity in the high-concentrated gel, which, to date, is the most limiting factor for using these hydrogels. In addition, based on SEM images and geometry analysis, the cells remodel collagen material to their extracellular matrix.

2.
Gels ; 10(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38247788

ABSTRACT

It is believed that 3D bioprinting will greatly help the field of tissue engineering and regenerative medicine, as live patient cells are incorporated into the material, which directly creates a 3D structure. Thus, this method has potential in many types of human body tissues. Collagen provides an advantage, as it is the most common extracellular matrix present in all kinds of tissues and is, therefore, very natural for cells and the organism. Hydrogels with highly concentrated collagen make it possible to create 3D structures without additional additives to crosslink the polymer, which could negatively affect cell proliferation and viability. This study established a new method for preparing highly concentrated collagen bioinks, which does not negatively affect cell proliferation and viability. The method is based on two successive neutralizations of the prepared hydrogel using the bicarbonate buffering mechanisms of the 2× enhanced culture medium and pH adjustment by adding NaOH. Collagen hydrogel was used in concentrations of 20 and 30 mg/mL dissolved in acetic acid with a concentration of 0.05 and 0.1 wt.%. The bioink preparation process is automated, including colorimetric pH detection and adjustment. The new method was validated using bioprinting and subsequent cultivation of collagen hydrogels with incorporated stromal cells. After 96 h of cultivation, cell proliferation and viability were not statistically significantly reduced.

3.
Int J Mol Sci ; 23(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35328732

ABSTRACT

Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton's jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties.


Subject(s)
Hematopoietic Stem Cell Transplantation , Vascular Remodeling , Allogeneic Cells , Animals , Blood Vessel Prosthesis , Carotid Arteries , Cattle , Humans , Hyperplasia , Pericardium , Sheep , Swine , Tissue Engineering
4.
Gels ; 7(4)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34940312

ABSTRACT

The 3D bioprinting of cell-incorporated gels is a promising direction in tissue engineering applications. Collagen-based hydrogels, due to their similarity to extracellular matrix tissue, can be a good candidate for bioink and 3D bioprinting applications. However, low hydrogel concentrations of hydrogel (<10 mg/mL) provide insufficient structural support and, in highly concentrated gels, cell proliferation is reduced. In this study, we showed that it is possible to print highly concentrated collagen hydrogels with incorporated cells, where the viability of the cells in the gel remains very good. This can be achieved simply by optimizing the properties of the bioink, particularly the gel composition and pH modification, as well as by optimizing the printing parameters. The bioink composed of porcine collagen hydrogel with a collagen concentration of 20 mg/mL was tested, while the final bioink collagen concentration was 10 mg/mL. This bioink was modified with 0, 5, 9, 13, 17 and 20 µL/mL of 1M NaOH solution, which affected the resulting pH and gelling time. Cylindrical samples based on the given bioink, with the incorporation of porcine adipose-derived stromal cells, were printed with a custom 3D bioprinter. These constructs were cultivated in static conditions for 6 h, and 3 and 5 days. Cell viability and morphology were evaluated. Mechanical properties were evaluated by means of a compression test. Our results showed that optimal composition and the addition of 13 µL NaOH per mL of bioink adjusted the pH of the bioink enough to allow cells to grow and divide. This modification also contributed to a higher elastic modulus, making it possible to print structures up to several millimeters with sufficient mechanical resistance. We optimized the bioprinter parameters for printing low-viscosity bioinks. With this experiment, we showed that a high concentration of collagen gels may not be a limiting factor for cell proliferation.

5.
Biomedicines ; 9(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34572322

ABSTRACT

Bioprinting is a modern tool suitable for creating cell scaffolds and tissue or organ carriers from polymers that mimic tissue properties and create a natural environment for cell development. A wide range of polymers, both natural and synthetic, are used, including extracellular matrix and collagen-based polymers. Bioprinting technologies, based on syringe deposition or laser technologies, are optimal tools for creating precise constructs precisely from the combination of collagen hydrogel and cells. This review describes the different stages of bioprinting, from the extraction of collagen hydrogels and bioink preparation, over the parameters of the printing itself, to the final testing of the constructs. This study mainly focuses on the use of physically crosslinked high-concentrated collagen hydrogels, which represents the optimal way to create a biocompatible 3D construct with sufficient stiffness. The cell viability in these gels is mainly influenced by the composition of the bioink and the parameters of the bioprinting process itself (temperature, pressure, cell density, etc.). In addition, a detailed table is included that lists the bioprinting parameters and composition of custom bioinks from current studies focusing on printing collagen gels without the addition of other polymers. Last but not least, our work also tries to refute the often-mentioned fact that highly concentrated collagen hydrogel is not suitable for 3D bioprinting and cell growth and development.

6.
Transplant Proc ; 53(6): 2082-2090, 2021.
Article in English | MEDLINE | ID: mdl-34274120

ABSTRACT

BACKGROUND: Donation after circulatory death donors are becoming a common source of organs for transplant. Despite good long-term outcomes of grafts from donation after circulatory death, this group is affected by a higher occurrence of delayed graft function and primary nonfunction. Our hypothesis is based on the assumption that washing the kidney grafts in the donor's body using a simple mechanical perfusion pump will result in faster and better perfusion of the parenchyma and more efficient cooling compared with hydrostatic perfusion alone. METHODS: A total of 7 experimental animals (pigs) were used. The animals were divided into 2 groups: group A (n = 3) and group B (n = 4). After a 30-minute ischemic period for the selected kidney (clamped renal vessels), intra-arterial perfusion was performed. In group A perfusion was performed using hydrostatic pressure; in group B mechanical controlled perfusion was performed. After perfusion, declamping of the renal vessels caused restoration of flow. For graft quality evaluation, biopsy specimens were harvested, and the cooling speed was observed. Laboratory markers or renal failure were determined. RESULTS: We found no significant differences between temperature drop and total diuresis between groups A and B. A significant difference was found between the groups in both flow parameters (flow maximum and mean flow) (P = .007, respectively P = .019). No laboratory parameters were found to be statistically significantly different. Histopathological analysis strongly supports the hypothesis of better flushing of kidney grafts using mechanical perfusion. CONCLUSIONS: Based on our results, better kidney graft quality can be expected after immediately started mechanical perfusion in situ.


Subject(s)
Kidney Transplantation , Animals , Death , Delayed Graft Function , Graft Survival , Kidney , Organ Preservation , Perfusion , Swine , Tissue Donors
7.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673317

ABSTRACT

Vascular endothelial growth factor-A165 (VEGF-A165) and fibroblast growth factor-2 (FGF-2) are currently used for the functionalization of biomaterials designed for tissue engineering. We have developed a new simple method for heterologous expression and purification of VEGF-A165 and FGF-2 in the yeast expression system of Pichia pastoris. The biological activity of the growth factors was assessed in cultures of human and porcine adipose tissue-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs). When added into the culture medium, VEGF-A165 stimulated proliferation only in HUVECs, while FGF-2 stimulated the proliferation of both cell types. A similar effect was achieved when the growth factors were pre-adsorbed to polystyrene wells. The effect of our recombinant growth factors was slightly lower than that of commercially available factors, which was attributed to the presence of some impurities. The stimulatory effect of the VEGF-A165 on cell adhesion was rather weak, especially in ADSCs. FGF-2 was a potent stimulator of the adhesion of ADSCs but had no to negative effect on the adhesion of HUVECs. In sum, FGF-2 and VEGF-A165 have diverse effects on the behavior of different cell types, which maybe utilized in tissue engineering.


Subject(s)
Cell Adhesion/drug effects , Cell Proliferation/drug effects , Fibroblast Growth Factor 2/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Stem Cells/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Animals , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/genetics , Human Umbilical Vein Endothelial Cells/cytology , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Stem Cells/cytology , Swine , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/genetics
8.
Mater Sci Eng C Mater Biol Appl ; 121: 111792, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33579442

ABSTRACT

A unique composite nanodiamond-based porous material with a hierarchically-organized submicron-nano-structure was constructed for potential bone tissue engineering. This material consisted of submicron fibers prepared by electrospinning of silicon oxide (SiOx), which were oxygen-terminated (O-SiOx) and were hermetically coated with nanocrystalline diamond (NCD) films. The NCD films were then terminated with hydrogen (H-NCD) or oxygen (O-NCD). The materials were tested as substrates for the adhesion, growth and osteogenic differentiation of human osteoblast-like Saos-2 cells. The number and the spreading area of the initially adhered cells, their growth rate during 7 days after seeding and the activity of alkaline phosphatase (ALP) were significantly higher on the NCD-coated samples than on the uncoated O-SiOx samples. In addition, the concentration of type I collagen was significantly higher in the cells on the O-NCD-coated samples than on the bare O-SiOx samples. The observed differences could be attributed to the tunable wettability of NCD and to the more appropriate surface morphology of the NCD-coated samples in contrast to the less stable, rapidly eroding bare SiOx surface. The H-NCD coatings and the O-NCD coatings both promoted similar initial adhesion of Saos-2 cells, but the subsequent cell proliferation activity was higher on the O-NCD-coated samples. The concentration of beta-actin, vinculin, type I collagen and alkaline phosphatase (ALP), the ALP activity, and also the calcium deposition tended to be higher in the cells on the O-NCD-coated samples than on the H-NCD-coated samples, although these differences did not reach statistical significance. The improved cell performance on the O-NCD-coated samples could be attributed to higher wettability of these samples (water drop contact angle less than 10°), while the H-NCD-coated samples were hydrophobic (contact angle >70°). NCD-coated porous SiOx meshes can therefore be considered as appropriate scaffolds for bone tissue engineering, particularly those with an O-terminated NCD coating.


Subject(s)
Diamond , Osteogenesis , Cell Adhesion , Cell Differentiation , Cell Proliferation , Coated Materials, Biocompatible/pharmacology , Humans , Osteoblasts
9.
Biomed Mater ; 16(2): 025024, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33629665

ABSTRACT

An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.


Subject(s)
Heart Valves , Pericardium/metabolism , Tissue Engineering/methods , Tissue Scaffolds , Adipose Tissue/cytology , Animals , Bioprosthesis , Cell Proliferation , Collagen/chemistry , Decellularized Extracellular Matrix/chemistry , Endothelial Cells/cytology , Extracellular Matrix/metabolism , Fibrinogen/chemistry , Fibronectins/chemistry , Human Umbilical Vein Endothelial Cells , Humans , In Vitro Techniques , Lipectomy , Microscopy, Fluorescence , Pericardium/pathology , Stem Cells , Swine , Thrombin/chemistry , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/metabolism
10.
Biomed Res Int ; 2020: 6545190, 2020.
Article in English | MEDLINE | ID: mdl-33102587

ABSTRACT

INTRODUCTION: The rate of thawing of cryopreserved human iliac arteries allografts (CHIAA) directly affects the severeness of structural changes that occur during this process. METHOD: The experiment was performed on ten CHIAA. The 10% dimethylsulphoxide in 6% hydroxyethyl starch solution was used as the cryoprotectant; all CHIAA were cooled at a controlled rate and stored in the vapor phase of liquid nitrogen (-194°C). Two thawing protocols were tested: (1) placing the CHIAA in a water bath at 37°C, and (2) the CHIAA were thawed in a controlled environment at 5°C. All samples underwent analysis under a scanning electron microscope. Testing of the mechanical properties of the CHIAA was evaluated on a custom-built single axis strain testing machine. Longitudinal and circumferential samples were prepared from each tested CHIAA. RESULTS: Ultrastructural analysis revealed that all five CHIAA thawed during the thawing protocol 1 which showed significantly more damage to the subendothelial structures when compared to the samples thawed in protocol 2. Mechanical properties: Thawing protocol 1-longitudinal UTS 2, 53 ± 0, 47 MPa at relative strain 1, 27 ± 0, 12 and circumferential UTS 1, 94 ± 0, 27 MPa at relative strain 1, 33 ± 0, 09. Thawing protocol 2-longitudinal ultimate tensile strain (UTS) 2, 42 ± 0, 34 MPa at relative strain 1, 32 ± 0, 09 and circumferential UTS 1, 98 ± 0, 26 MPa at relative strain 1, 29 ± 0, 07. Comparing UTS showed no statistical difference between thawing methods. CONCLUSION: Despite the significant differences in structural changes of presented thawing protocols, the ultimate tensile strain showed no statistical difference between thawing methods.


Subject(s)
Allografts/physiology , Cryopreservation/methods , Iliac Artery/physiology , Adult , Allografts/drug effects , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Female , Humans , Iliac Artery/drug effects , Male , Middle Aged
11.
Nanomedicine (Lond) ; 15(19): 1843-1859, 2020 08.
Article in English | MEDLINE | ID: mdl-32752935

ABSTRACT

Aim: To evaluate the impact of a nanostructured surface created on ß-titanium alloy, Ti-36Nb-6Ta, on the growth and differentiation of human mesenchymal stem cells. Materials & methods: The nanotubes, with average diameters 18, 36 and 46 nm, were prepared by anodic oxidation. Morphology, hydrophilicity and mechanical properties of the nanotube layers were characterized. The biocompatibility and osteogenic potential of the nanostructured surfaces were established using various in vitro assays, scanning electron microscopy and confocal microscopy. Results: The nanotubes lowered elastic modulus close to that of bone, positively influenced cell adhesion, improved ALP activity, synthesis of type I collagen and osteocalcin expression, but diminished early cell proliferation. Conclusion: Nanostructured Ti-36Nb-6Ta with nanotube diameters 36 nm was the most promising material for bone implantation.


Subject(s)
Nanotubes , Titanium , Alloys , Cell Adhesion , Cell Proliferation , Humans , Microscopy, Electron, Scanning , Osteoblasts , Osteogenesis , Surface Properties
12.
Nanomaterials (Basel) ; 10(2)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979245

ABSTRACT

Nanocellulose/nanocarbon composites are newly emerging smart hybrid materials containing cellulose nanoparticles, such as nanofibrils and nanocrystals, and carbon nanoparticles, such as "classical" carbon allotropes (fullerenes, graphene, nanotubes and nanodiamonds), or other carbon nanostructures (carbon nanofibers, carbon quantum dots, activated carbon and carbon black). The nanocellulose component acts as a dispersing agent and homogeneously distributes the carbon nanoparticles in an aqueous environment. Nanocellulose/nanocarbon composites can be prepared with many advantageous properties, such as high mechanical strength, flexibility, stretchability, tunable thermal and electrical conductivity, tunable optical transparency, photodynamic and photothermal activity, nanoporous character and high adsorption capacity. They are therefore promising for a wide range of industrial applications, such as energy generation, storage and conversion, water purification, food packaging, construction of fire retardants and shape memory devices. They also hold great promise for biomedical applications, such as radical scavenging, photodynamic and photothermal therapy of tumors and microbial infections, drug delivery, biosensorics, isolation of various biomolecules, electrical stimulation of damaged tissues (e.g., cardiac, neural), neural and bone tissue engineering, engineering of blood vessels and advanced wound dressing, e.g., with antimicrobial and antitumor activity. However, the potential cytotoxicity and immunogenicity of the composites and their components must also be taken into account.

13.
Article in English | MEDLINE | ID: mdl-31907491

ABSTRACT

Titanium surface treatment is a crucial process for achieving sufficient osseointegration of an implant into the bone. If the implant does not heal sufficiently, serious complications may occur, e.g. infection, inflammation, aseptic loosening of the implant, or the stress-shielding effect, as a result of which the implant may need to be reoperated. After a titanium graft has been implanted, several interactions are crucial in order to create a strong bone-implant connection. It is essential that cells adhere to the surface of the implant. Surface roughness has a significant influence on cell adhesion, and also on improving and accelerating osseointegration. Other highly important factors are biocompatibility and resistance to bacterial contamination. Bio-inertness of titanium is ensured by the protective film of titanium oxides that forms spontaneously on its surface. This film prevents the penetration of metal compounds, and it is well-adhesive for calcium and phosphate ions, which are necessary for the formation of the mineralized bone structure. Since the presence of the film alone is not sufficient for the biocompatibility of titanium, a suitable surface finish is required to create a firm bone-implant connection. In this review, we explain and compare the most widely-used methods for modulating the surface roughness of titanium implants in order to enhance cell adhesion on the surface of the implant, e.g. plasma spraying, sandblasting, acid etching, laser treatment, sol-gel etc., The methods are divided into three overlapping groups, according to the type of modification.


Subject(s)
Coated Materials, Biocompatible , Osseointegration , Prostheses and Implants , Titanium , Humans
14.
Biomed Mater ; 15(1): 015008, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31665713

ABSTRACT

Decellularized human pericardium is under study as an allogenic material for cardiovascular applications. The effects of crosslinking on the mechanical properties of decellularized pericardium were determined with a uniaxial tensile test, and the effects of crosslinking on the collagen structure of decellularized pericardium were determined by multiphoton microscopy. The viability of human umbilical vein endothelial cells seeded on decellularized human pericardium and on pericardium strongly and weakly crosslinked with glutaraldehyde and with genipin was evaluated by means of an MTS assay. The viability of the cells, measured by their metabolic activity, decreased considerably when the pericardium was crosslinked with glutaraldehyde. Conversely, the cell viability increased when the pericardium was crosslinked with genipin. Coating both non-modified pericardium and crosslinked pericardium with a fibrin mesh or with a mesh containing attached heparin and/or fibronectin led to a significant increase in cell viability. The highest degree of viability was attained for samples that were weakly crosslinked with genipin and modified by means of a fibrin and fibronectin coating. The results indicate a method by which in vivo endothelialization of human cardiac allografts or xenografts could potentially be encouraged.


Subject(s)
Biocompatible Materials , Pericardium/transplantation , Allografts , Animals , Biocompatible Materials/chemistry , Biomechanical Phenomena , Cell Survival , Collagen/chemistry , Collagen/ultrastructure , Cross-Linking Reagents , Fibrin , Fibronectins , Glutaral , Heterografts , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Iridoids , Materials Testing , Microscopy, Fluorescence, Multiphoton , Pericardium/chemistry , Pericardium/ultrastructure , Surface Plasmon Resonance , Tensile Strength
15.
Colloids Surf B Biointerfaces ; 177: 130-136, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30716698

ABSTRACT

Cell-based impedance spectroscopy is a promising label-free method for electrical monitoring of cell activity. Here we present a diamond-based impedance sensor with built-in gold interdigitated electrodes (IDT) as a promising platform for simultaneous electrical and optical monitoring of adipose tissue-derived stem cells (ASCs). The impedance spectra were collected in a wide frequency range (from 100 Hz to 50 kHz) for 90 h of cell cultivation in chambers designed for static cultivation. Absolute impedance spectra were analyzed in terms of measured frequencies and cell properties monitored by a high-resolution digital camera. The control commercially-available impedance system, based on gold electrodes exposed to the cultivation media, and also our specially developed sensor with gold electrodes built into a diamond thin film detected three phases of cell growth, namely the phase of cell attachment and spreading, the phase of cell proliferation, and the stationary phase without significant changes in cell number. These results were confirmed by simultaneous live cell imaging. The design of the sensing electrode is discussed, pointing out its enhanced sensitivity for a certain case. The diamond-based sensor appeared to be more sensitive for detecting the cell-substrate interaction in the first phase of cell growth, while the control system was more sensitive in the second phase of cell growth.


Subject(s)
Adipose Tissue/cytology , Diamond/chemistry , Electric Impedance , Nanoparticles/chemistry , Stem Cells/cytology , Cells, Cultured , Humans , Time Factors
16.
RSC Adv ; 9(20): 11341-11355, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-35520235

ABSTRACT

The formation of nanostructures on titanium implant surfaces is a promising strategy to modulate cell adhesion and differentiation, which are crucial for future application in bone regeneration. The aim of this study was to investigate how the nanotube diameter and/or nanomechanical properties alter human osteoblast like cell (Saos-2) adhesion, growth and osteogenic differentiation in vitro. Nanotubes, with diameters ranging from 24 to 66 nm, were fabricated on a commercially pure titanium (cpTi) surface using anodic oxidation with selected end potentials of 10 V, 15 V and 20 V. The cell response was studied in vitro on untreated and nanostructured samples using a measurement of metabolic activity, cell proliferation, alkaline phosphatase activity and qRT-PCR, which was used for the evaluation of osteogenic marker expression (collagen type I, osteocalcin, RunX2). Early cell adhesion was investigated using SEM and ELISA. Adhesive molecules (vinculin, talin), collagen and osteocalcin were also visualized using confocal microscopy. Moreover, the reduced elastic modulus and indentation hardness of nanotubes were assessed using a TriboIndenter™. Smooth and nanostructured cpTi both supported cell adhesion, proliferation and bone-specific mRNA expression. The nanotubes enhanced collagen type I and osteocalcin synthesis, compared to untreated cpTi, and the highest synthesis was observed on samples modified with 20 V nanotubes. Significant differences were found in the cell adhesion, where the vinculin and talin showed a dot-like distribution. Both the lowest reduced elastic modulus and indentation hardness were assessed from 20 V samples. The nanotubes of mainly 20 V samples showed a high potential for their use in bone implantation.

17.
In Vivo ; 30(6): 801-805, 2016.
Article in English | MEDLINE | ID: mdl-27815464

ABSTRACT

AIM: There is still a lack of organs for transplantation purposes. In the field of kidney and liver transplantation, one available solution is the use of organs from so-called marginal donors. These donors can be e.g. non-heart-beating donors. In these cases, perfusion and preservation of organs intended for transplantation is generally more difficult. Retrograde oxygen persufflation (ROP) may be a possible solution to this issue. This method is based on retrograde perfusion by oxygen through the renal vein thus reconditioning the organ. MATERIALS AND METHODS: We operated on 10 animals (porcine models). Ischemic injury of the right kidney was simulated in all animals. In group A (N=5), kidneys were perfused with retrograde oxygen persufflation after explantation. In group B (N=5), kidneys were perfused intrarterially as in usual clinical practice. After perfusion all kidneys were transplanted to the original donor animal. Quality of graft restitution was evaluated by the urea level obtained from the renal vein and by histopathological analysis after explantation. RESULTS: We found no statistically significant differences between groups A and B in urea levels after transplantation, nor did we find any significant differences in quality of kidney parenchyma restoration between these groups. CONCLUSION: Retrograde oxygen persufflation is able to protect and restore kidney parenchyma.


Subject(s)
Kidney Transplantation/methods , Organ Preservation/methods , Oxygen/metabolism , Perfusion/methods , Animals , Kidney/metabolism , Male , Portal Vein , Reperfusion Injury/metabolism , Sus scrofa , Transplantation, Autologous
18.
PLoS One ; 10(5): e0125484, 2015.
Article in English | MEDLINE | ID: mdl-25945799

ABSTRACT

In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm(2). The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm(2)) than on surfaces with a higher concentration of FGF-2 (120 ng/cm(2)).


Subject(s)
Albumins/pharmacology , Cell Culture Techniques/methods , Endothelial Cells/cytology , Fibroblast Growth Factor 2/pharmacology , Heparin/pharmacology , Animals , Cattle , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Culture Media/chemistry , Fibroblast Growth Factor 2/metabolism , Humans , Microscopy, Atomic Force , Protein Binding
19.
Tissue Eng Part A ; 20(15-16): 2253-64, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24606163

ABSTRACT

Vascular surgery for atherosclerosis is confronted by the lack of a suitable bypass material. Tissue engineering strives to produce bio-artificial conduits to provide resistance to thrombosis. The objectives of our study were to culture endothelial cells (EC) on composite assemblies of extracellular matrix proteins, and to evaluate the cellular phenotype under flow. Cell-adhesive assemblies were fabricated on glass slides as combinations of collagen (Co), laminin (LM), and fibronectin (FN), resulting in three samples: Co, Co/LM, and Co/FN. Surface topography, roughness, and wettability were determined. Human saphenous vein EC were harvested from cardiac patients, cultured on the assemblies and submitted to laminar shear stress (SS) of 12 dyn/cm(2) for 40, 80, and 120 min. Cell retention was assessed and qRT-PCR of adhesion genes (VE-cadherin, vinculin, KDR, CD-31 or PECAM-1, ß1-integrins) and metabolic genes (t-PA, NF-κB, eNOS and MMP-1) was performed. Quantitative immunofluorescence of VE cadherin, vinculin, KDR, and vonWillebrand factor was performed after 2 and 6 h of flow. Static samples were excluded from shearing. The cells reached confluence with similar growth curves. The cells on Co/LM and Co/FN were resistant to flow up to 120 min but minor desquamation occurred on Co corresponding with temporary downregulation of VE cadherin and vinculin-mRNA and decreased fluorescence of vinculin. The cells seeded on Co/LM initially more upregulated vinculin-mRNA and also the inflammatory factor NF-κB, and the cells plated on Co/FN changed the expression profile minimally in comparison with the static control. Fluorescence of VE cadherin and vonWillebrand factor was enhanced on Co/FN. The cells cultured on Co/LM and Co/FN increased the vinculin fluorescence and expressed more VE cadherin and KDR-mRNA than the cells on Co. The cells plated on Co/FN upregulated the mRNA of VE cadherin, CD-31, and MMP 1 to a greater extent than the cells on Co/LM and they enhanced the fluorescence of VE cadherin, KDR, and vonWillebrand factor. Some of these changes sustained up to 6 h of flow, as confirmed by immunofluorescence. Combined matrices Co/LM and Co/FN seem to be more suitable for EC seeding and retention under flow. Moreover, Co/FN matrix promoted slightly more favorable cellular phenotype than Co/LM under SS of 2-6 h.


Subject(s)
Endothelial Cells/metabolism , Extracellular Matrix Proteins/pharmacology , Gene Expression Regulation/drug effects , Shear Strength , Stress, Mechanical , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Fluorescent Antibody Technique , Gene Expression Profiling , Humans , Mice , Rats , Saphenous Vein/cytology , Surface Plasmon Resonance , Time Factors , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...