Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
CPT Pharmacometrics Syst Pharmacol ; 13(2): 281-295, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38050332

ABSTRACT

Several investigational agents are under evaluation in systemic lupus erythematosus (SLE) clinical trials but quantitative frameworks to enable comparison of their efficacy to reference benchmark treatments are lacking. To benchmark SLE treatment effects and identify clinically important covariates, we developed a model-based meta-analysis (MBMA) within a latent variable model framework for efficacy end points and SLE composite end point scores (BILAG-based Composite Lupus Assessment and Systemic Lupus Erythematosus Responder Index) using aggregate-level data on approved and investigational therapeutics. SLE trials were searched using PubMed and www.clinicaltrials.gov for treatment name, SLE and clinical trial as search criteria that resulted in four data structures: (1) study and investigational agent, (2) dose and regimen, (3) baseline descriptors, and (4) outcomes. The final dataset consisted of 25 studies and 81 treatment arms evaluating 16 different agents. A previously developed (K Goteti et al. 2022) SLE latent variable model of data from placebo arms (placebo + standard of care treatments) was used to describe aggregate SLE end points over time for the various SLE placebo and treatment arms in a Bayesian MBMA framework. Continuous dose-effect relationships using a maximum effect model were included for anifrolumab, belimumab, CC-220 (iberdomide), epratuzumab, lulizumab pegol, and sifalimumab, whereas the remaining treatments were modeled as discrete dose effects. The final MBMA model was then used to benchmark these compounds with respect to the maximal efficacy on the latent variable compared to the placebo. This MBMA illustrates the application of latent variable models in understanding the trajectories of composite end points in chronic diseases and should enable model-informed development of new investigational agents in SLE.


Subject(s)
Benchmarking , Lupus Erythematosus, Systemic , Humans , Latent Class Analysis , Bayes Theorem , Treatment Outcome , Lupus Erythematosus, Systemic/drug therapy
2.
CPT Pharmacometrics Syst Pharmacol ; 12(2): 180-195, 2023 02.
Article in English | MEDLINE | ID: mdl-36350330

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease affecting multiple organ systems. Many investigational agents have failed or shown only modest effects when added to standard of care (SoC) therapy in placebo-controlled trials, and only two therapies have been approved for SLE in the last 60 years. Clinical trial outcomes have shown discordance in drug effects between clinical endpoints. Herein, we characterized longitudinal disease activity in the SLE population and the sources of variability by developing a latent disease trajectory model for SLE component endpoints (Systemic Lupus Erythematosus Disease Activity Index [SLEDAI], Physician's Global Assessment [PGA], British Isles Lupus Assessment Group Index [BILAG]) and composite endpoints (Systemic Lupus Erythematosus Responder Index [SRI], BILAG-based Composite Lupus Assessment [BICLA], and Lupus Low Disease Activity State [LLDAS]) using patient-level historical SoC data from nine phase II and III studies. Across all endpoints, in predictions up to 52 weeks from the final disease trajectory model, the following baseline covariates were associated with a greater decrease in SLE disease activity and higher response to placebo + SoC: Hispanic ethnicity from Central/South America, absence of hypocomplementemia, recent SLE diagnosis, and high baseline disease activity score using SLEDAI and BILAG separately. No discernible differences were observed in the trajectory of response to placebo + SoC across different SoC medications (antimalarial and immunosuppressant such as mycophenolate, methotrexate, and azathioprine). Across all endpoints, disease trajectory showed no difference in Asian versus non-Asian patients, supporting Asia-inclusive global SLE drug development. These results describe the first population approach to support a model-informed drug development framework in SLE.


Subject(s)
Antibodies, Monoclonal, Humanized , Lupus Erythematosus, Systemic , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Severity of Illness Index , Treatment Outcome , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/diagnosis , Immunosuppressive Agents/therapeutic use , Patient Acuity , Probability
4.
Eur J Drug Metab Pharmacokinet ; 46(5): 601-611, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34328632

ABSTRACT

Immunosuppressive drugs can alleviate debilitating symptoms of autoimmune diseases, but, by the same token, excessive immune suppression can result in an increased risk of infection. Despite the dangers of a compromised immune system, clear definitions of what constitutes excessive suppression remain elusive. Here we review the most common infections associated with primary antibody deficiencies (PADs), such as agammaglobulinemia, common variable immunodeficiency (CVID), and IgA deficiency, as well as infections that are associated with drug-induced or secondary antibody immunodeficiencies (SADs). We identify a number of bacterial, viral, and fungal infections (e.g., Listeria monocytogenes, Staphylococcus sp., Salmonella spp., Escherichia coli, influenza, varicella zoster virus, and herpes simplex virus) associated with both PADs and SADs, and suggest that diagnostic criteria for PADs could be used as a first-line measure to identify potentially unsafe levels of immune suppression in SADs. Specifically, we suggest that, based on PAD diagnostic criteria, IgG levels should remain above 2-3 g/L, IgA levels should not fall below 0.07 g/L, and IgM levels should remain above 0.4 g/L to prevent immunosuppressive drugs from inducing mimicking PAD-like effects. We suggest that these criteria could be used in the early stages of drug development, and that pharmacokinetic and pharmacodynamic modeling could help guide patient selection to potentially improve drug safety. We illustrate the proposed approach using atacicept as an example and conclude with a discussion of the applicability of this approach for other drugs that may induce excessive immune suppression.


Subject(s)
Immunologic Deficiency Syndromes/complications , Immunosuppressive Agents/adverse effects , Primary Immunodeficiency Diseases/complications , Autoimmune Diseases/drug therapy , Drug Development , Humans , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/etiology , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacokinetics , Infections/etiology , Infections/immunology , Models, Biological , Models, Theoretical , Primary Immunodeficiency Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL