Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Microorganisms ; 7(9)2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31540065

ABSTRACT

Plants harbor a diversity of microorganisms constituting the plant microbiome. Many bioinoculants for agricultural crops have been isolated from plants. Nevertheless, plants are an underexplored niche for the isolation of microorganisms with other biotechnological applications. As a part of a collection of canola endophytes, we isolated strain CDVBN77T. Its genome sequence shows not only plant growth-promoting (PGP) mechanisms, but also genetic machinery to produce secondary metabolites, with potential applications in the pharmaceutical industry, and to synthesize hydrolytic enzymes, with potential applications in biomass degradation industries. Phylogenetic analysis of the 16S rRNA gene of strain CDVBN77T shows that it belongs to the genus Microvirga, its closest related species being M. aerophila DSM 21344T (97.64% similarity) and M. flavescens c27j1T (97.50% similarity). It contains ubiquinone 10 as the predominant quinone, C19:0 cycloω8c and summed feature 8 as the major fatty acids, and phosphatidylcholine and phosphatidylethanolamine as the most abundant polar lipids. Its genomic DNA G+C content is 62.3 (mol %). Based on phylogenetic, chemotaxonomic, and phenotypic analyses, we suggest the classification of strain CDVBN77T within a new species of the genus Microvirga and propose the name Microvirga brassicacearum sp. nov. (type strain CDVBN77T = CECT 9905T = LMG 31419T).

2.
Sci Rep ; 9(1): 11033, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31363104

ABSTRACT

Melinis minutiflora is an invasive species that threatens the biodiversity of the endemic vegetation of the campo rupestre biome in Brazil, displacing the native vegetation and favouring fire spread. As M. minutiflora invasion has been associated with a high nitrogen (N) demand, we assessed changes in N cycle under four treatments: two treatments with contrasting invasion levels (above and below 50%) and two un-invaded control treatments with native vegetation, in the presence or absence of the leguminous species Periandra mediterranea. This latter species was considered to be the main N source in this site due to its ability to fix N2 in association with Bradyrhizobia species. Soil proteolytic activity was high in treatments with P. mediterranea and in those severely invaded, but not in the first steps of invasion. While ammonium was the N-chemical species dominant in plots with native species, including P.mediterranea, soil nitrate prevailed only in fully invaded plots due to the stimulation of the nitrifying bacterial (AOB) and archaeal (AOA) populations carrying the amoA gene. However, in the presence of P. mediterranea, either in the beginning of the invasion or in uninvaded plots, we observed an inhibition of the nitrifying microbial populations and nitrate formation, suggesting that this is a biotic resistance strategy elicited by P. mediterranea to compete with M. minutiflora. Therefore, the inhibition of proteolytic activity and the nitrification process were the strategies elicited by P.mediterranea to constrain M.munitiflora invasion.


Subject(s)
Fabaceae/metabolism , Introduced Species , Nitrogen Fixation , Poaceae/physiology , Soil/chemistry , Archaea/metabolism , Bacteria/metabolism , Fabaceae/microbiology , Fabaceae/physiology , Nitrification
3.
Syst Appl Microbiol ; 42(2): 240-247, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30415881

ABSTRACT

Phaseolus vulgaris and Lens culinaris are two legumes with different distribution centers that were introduced in Spain at different times, but in some regions L. culinaris has been traditionally cultivated and P. vulgaris did not. Here we analysed the rhizobia isolated from nodules of these two legumes in one of these regions. MALDI-TOF MS analysis showed that all isolated strains matched with Rhizobium laguerreae and the phylogenetic analysis of rrs, atpD and recA genes confirmed these results. The phylogenetic analysis of these core genes allowed the differentiation of several groups within R. laguerreae and unexpectedly, strains with housekeeping genes identical to that of the type strain of R. laguerreae presented some differences in the rrs gene. In some strains this gene contains an intervening sequence (IVS) identical to that found in Rhizobium strains nodulating several legumes in different geographical locations. The atpD, recA and nodC genes of all isolated strains clustered with those of strains nodulating L. culinaris in its distribution centers, but not with those nodulating P. vulgaris in theirs. Therefore, all these strains belong to the symbiovar viciae, including those isolated from P. vulgaris, which in the studied region established effective symbiosis with the common endosymbiont of L. culinaris, instead to with its common endosymbiont, the symbiovar phaseoli. These results are particularly interesting for biogeography studies, because they showed that, due its high promiscuity degree, P. vulgaris is able to establish symbiosis with local symbiovars well established in the soil after centuries of cultivation with other legumes.


Subject(s)
Phaseolus/microbiology , Phylogeny , Rhizobium/classification , Bacterial Typing Techniques , DNA, Bacterial/genetics , Genes, Bacterial , Rhizobium/isolation & purification , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , Soil Microbiology , Spain
4.
Sci Rep ; 8(1): 295, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321563

ABSTRACT

The growing interest in a healthy lifestyle and in environmental protection is changing habits regarding food consumption and agricultural practices. Good agricultural practice is indispensable, particularly for raw vegetables, and can include the use of plant probiotic bacteria for the purpose of biofertilization. In this work we analysed the probiotic potential of the rhizobial strain PEPV40, identified as Rhizobium laguerreae through the analysis of the recA and atpD genes, on the growth of spinach plants. This strain presents several in vitro plant growth promotion mechanisms, such as phosphate solubilisation and the production of indole acetic acid and siderophores. The strain PEPV40 produces cellulose and forms biofilms on abiotic surfaces. GFP labelling of this strain showed that PEPV40 colonizes the roots of spinach plants, forming microcolonies typical of biofilm initiation. Inoculation with this strain significantly increases several vegetative parameters such as leaf number, size and weight, as well as chlorophyll and nitrogen contents. Therefore, our findings indicate, for the first time, that Rhizobium laguerreae is an excellent plant probiotic, which increases the yield and quality of spinach, a vegetable that is increasingly being consumed raw worldwide.


Subject(s)
Probiotics , Rhizobium/physiology , Spinacia oleracea/growth & development , Spinacia oleracea/microbiology , Biofilms , Cellulose/biosynthesis , Phenotype , Phylogeny , Plant Roots/microbiology , Rhizobium/classification , Seedlings/microbiology
5.
Mol Plant Microbe Interact ; 31(5): 568-575, 2018 05.
Article in English | MEDLINE | ID: mdl-29334470

ABSTRACT

The infection of legume plants by rhizobia is tightly regulated to ensure accurate bacterial penetration, infection, and development of functionally efficient nitrogen-fixing root nodules. Rhizobial Nod factors (NF) have key roles in the elicitation of nodulation signaling. Infection of white clover roots also involves the tightly regulated specific breakdown of the noncrystalline apex of cell walls in growing root hairs, which is mediated by Rhizobium leguminosarum bv. trifolii cellulase CelC2. Here, we have analyzed the impact of this endoglucanase on symbiotic signaling in the model legume Medicago truncatula. Ensifer meliloti constitutively expressing celC gene exhibited delayed nodulation and elicited aberrant ineffective nodules, hampering plant growth in the absence of nitrogen. Cotreatment of roots with NF and CelC2 altered Ca2+ spiking in root hairs and induction of the early nodulin gene ENOD11. Our data suggest that CelC2 alters early signaling between partners in the rhizobia-legume interaction.


Subject(s)
Medicago truncatula/drug effects , Medicago truncatula/microbiology , Plant Root Nodulation/physiology , Rhizobiaceae/metabolism , Signal Transduction/drug effects , beta-Glucosidase/metabolism , Medicago truncatula/metabolism , Plant Root Nodulation/drug effects , Symbiosis
6.
Int J Syst Evol Microbiol ; 67(7): 2301-2305, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28693668

ABSTRACT

In this study, three strains belonging to the genus Mesorhizobium, CSLC115NT, CSLC19N and CSLC37N, isolated from Lotus corniculatus nodules in Spain, were characterized. Their 16S rRNA gene sequences were closely related to those of Mesorhizobium metallidurans STM 2683T, Mesorhizobium tianshanense A-1BST, Mesorhizobium tarimense CCBAU 83306T, Mesorhizobium gobiense CCBAU 83330T and Mesorhizobium caraganae CCBAU 11299T with similarity values higher than 99.7 %. The analysis of concatenated recA and glnII genes showed that the most closely related type strains were M. metallidurans STM 2683T, M. tianshanense A-1BST and M. tarimense CCBAU 83306T with 96, 95 and 94 % similarity values in the recA gene and 95, 94 and 94 % in the glnII gene, respectively. M. metallidurans LMG 24485T, M. tianshanense USDA 3592T and M. tarimense LMG 24338T showed means of 44, 41 and 42 % DNA-DNA relatedness, respectively, with respect to strain CSLC115NT. The major fatty acids were those from summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), C16 : 0 and C18 : 1ω7c 11-methyl. The results of phenotypic characterization support that the L. corniculatus nodulating strains analysed in this work belong to a novel species of the genus Mesorhizobium for which the name Mesorhizobium helmanticense sp. nov. is proposed, and the type strain is CSLC115NT (= LMG 29734T=CECT 9168T).


Subject(s)
Lotus/microbiology , Mesorhizobium/classification , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Mesorhizobium/genetics , Mesorhizobium/isolation & purification , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Symbiosis
7.
Environ Sci Pollut Res Int ; 24(21): 17436-17445, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28593540

ABSTRACT

Polyhydroxyalkanoic acids (PHAs) are natural polyesters that can be used to produce bioplastics which are biodegradable. Numerous microorganisms accumulate PHAs as energy reserves. Combinations of different PHAs monomers lead to the production of bioplastics with very different properties. In the present work, we show the capability of strains belonging to various phylogenetic lineages within the genus Mesorhizobium, isolated from Lotus corniculatus nodules, to produce different PHA monomers. Among our strains, we found the production of 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxydodecanoate, and 3-hydroxyhexadecanoate. Most of the PHA-positive strains were phylogenetically related to the species M. jarvisii. However, our findings suggest that the ability to produce different monomers forming PHAs is strain-dependent.


Subject(s)
Lotus , Mesorhizobium , Polyhydroxyalkanoates , Fabaceae , Phylogeny , Polyesters
8.
Environ Microbiol ; 19(7): 2661-2680, 2017 07.
Article in English | MEDLINE | ID: mdl-28401641

ABSTRACT

Small non-coding RNAs (sRNAs) are expected to have pivotal roles in the adaptive responses underlying symbiosis of nitrogen-fixing rhizobia with legumes. Here, we provide primary insights into the function and activity mechanism of the Sinorhizobium meliloti trans-sRNA NfeR1 (Nodule Formation Efficiency RNA). Northern blot probing and transcription tracking with fluorescent promoter-reporter fusions unveiled high nfeR1 expression in response to salt stress and throughout the symbiotic interaction. The strength and differential regulation of nfeR1 transcription are conferred by a motif, which is conserved in nfeR1 promoter regions in α-proteobacteria. NfeR1 loss-of-function compromised osmoadaptation of free-living bacteria, whilst causing misregulation of salt-responsive genes related to stress adaptation, osmolytes catabolism and membrane trafficking. Nodulation tests revealed that lack of NfeR1 affected competitiveness, infectivity, nodule development and symbiotic efficiency of S. meliloti on alfalfa roots. Comparative computer predictions and a genetic reporter assay evidenced a redundant role of three identical NfeR1 unpaired anti Shine-Dalgarno motifs for targeting and downregulation of translation of multiple mRNAs from transporter genes. Our data provide genetic evidence of the hyperosmotic conditions of the endosymbiotic compartments. NfeR1-mediated gene regulation in response to this cue could contribute to coordinate nutrient uptake with the metabolic reprogramming concomitant to symbiotic transitions.


Subject(s)
Medicago sativa/microbiology , RNA, Bacterial/metabolism , Sinorhizobium meliloti/physiology , Symbiosis , Adaptation, Physiological , Conserved Sequence , Medicago sativa/physiology , Osmosis , Plant Roots/microbiology , Plant Roots/physiology , RNA/metabolism , RNA, Bacterial/genetics , Sinorhizobium meliloti/genetics
9.
AIMS Microbiol ; 3(4): 733-746, 2017.
Article in English | MEDLINE | ID: mdl-31294185

ABSTRACT

Trifolium rubens L. is a leguminous plant "Preferential Attention", according to the Catalog of Protected Flora of Castile and Leon (Spain). In this study we aimed to analyze the potential of three bacterial strains of the genus Rhizobium to improve the growth and development of this plant. All three strains produced 3-indoleacetic acid (IAA), but the strain ATCC 14480 produced the most. In addition, all strains produced biofilms and cellulases, although in different quantities. The synthesis of these products has been described as being related to the processes of the adherence of bacteria to the plant root surface and their entrance into the plant, respectively. In addition, in vitro assays and assays conducted under controlled and sterile conditions were performed, showing that the three strains were capable of nodulating T. rubens L. and effectively fixed nitrogen for the plant. These results were corroborated by morphological and histological analysis of nodules. Finally, greenhouse assays determined the effects of the strains under more competitive conditions, and it was concluded that inoculated plants presented greater lengths and weights, both aerial and radicular, and also chlorophyll and nitrogen content compared to the uninoculated controls.

10.
Int J Syst Evol Microbiol ; 67(5): 1478-1481, 2017 May.
Article in English | MEDLINE | ID: mdl-27983469

ABSTRACT

A bacterial strain designated RA9T was isolated from a root of Cistus ladanifer in Spain. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate into the genus Bacillus with its closest relatives being Bacillus fortis R-6514T and Bacillus fordii R-7190T with 98.2 % similarity in both cases. DNA-DNA hybridization studies showed mean relatedness values of 29 and 30 %, respectively, between strain RA9T and the type strains of B. fortis and B. fordii. Cells of the isolate were Gram-stain-positive, motile, sporulating rods. Catalase and oxidase were positive. Gelatin, starch and casein were not hydrolysed. Menaquinone MK-7 was the only menaquinone detected and iso-C15 : 0 and anteiso-C15 : 0 were the major fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid, one unidentifed glycolipid and one unidentified lipid. meso-Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 43.1 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain RA9T should be considered as representing a novel species of the genus Bacillus, for which the name Bacillus terrae sp. nov. is proposed. The type strain is RA9T (=LMG 29736T=CECT 9170T).


Subject(s)
Bacillus/classification , Cistus/microbiology , Phylogeny , Rhizosphere , Soil Microbiology , Bacillus/genetics , Bacillus/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
11.
Sci Total Environ ; 577: 202-211, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27823824

ABSTRACT

The Serra do Rola Moça State Park (PESRM) in Minas Gerais State, Brazil is a preserved site representative of the campo rupestre biome over an ironstone outcrop that has a high level of plant diversity. Almost 60% of this grassy field has been invaded by the exotic molasses grass (Melinis minutiflora), which constitutes a severe threat to the biodiversity and survival of this biome, particularly due to the impacts of annual fires and inappropriate restoration interventions. Many invasive species exhibit a high demand for nitrogen (N). Hence, this work aimed to study the N cycle alterations promoted by M. minutiflora in a site of the campo rupestre, where the leguminous species Mimosa pogocephala was prevalent. The biome's soils exhibited a high natural N fertility and low C:N ratio. The main N source in this biome resulted from the biological N fixation performed by M. pogocephala associated with Burkholderia nodosa, as evidenced by the total leaf N content, leaf δ15N signature, nodule occupation and bacterial molecular identification analyses. The displacement of native species by molasses grass was associated with changes in the soil N forms, namely the nitrate increased as the ammonium decreased. The latter was the dominant N form in the native species plots, as observed in the soil analysis of total N, ammonium and nitrate contents. The dominant ammonium form was changed to the nitric form by the stimulation of ammonia-oxidising bacteria populations due to the invasive species. Therefore, the key mechanism behind the invasiveness of the exotic grass and the concomitant displacement of the native species may be associated with changes in the soil N chemical species. Based on this finding and on the high N-based soil fertility found in the campo rupestre N fertilisation procedures for restoration of invaded areas should be strictly avoided in this biome.

12.
PLoS One ; 11(2): e0148221, 2016.
Article in English | MEDLINE | ID: mdl-26845770

ABSTRACT

The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials). The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds) were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants, particularly under environmental stresses. This is the first report on the successful improvement of a rhizobium with a chaperone gene.


Subject(s)
Cicer/microbiology , Gene Dosage/genetics , Heat-Shock Proteins/genetics , Mesorhizobium/genetics , Molecular Chaperones/genetics , Acyltransferases/biosynthesis , Amidohydrolases/biosynthesis , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Heat-Shock Response , N-Acetylglucosaminyltransferases/genetics , Plant Root Nodulation/genetics , Root Nodules, Plant/metabolism , Stress, Physiological/genetics , Symbiosis/genetics , Transformation, Genetic/genetics
13.
Int J Syst Evol Microbiol ; 66(4): 1838-1843, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26843192

ABSTRACT

A bacterial strain designated PM10T was isolated from root nodules of Periandra mediterranea in Brazil. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus Paenibacillus with its closest relatives being Paenibacillus vulneris CCUG 53270T and Paenibacillus yunnanensis YN2T with 95.6 and 95.9% 16S rRNA gene sequence similarity, respectively. The isolate was a Gram-stain-variable, motile, sporulating rod that was catalase-negative and oxidase-positive. Caseinase was positive, amylase was weakly positive and gelatinase was negative. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the only menaquinone detected and anteiso-C15 : 0 was the major fatty acid. Major polar lipids were diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and two unidentified lipids. meso-Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 52.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain PM10T should be considered representative of a novel species of the genus Paenibacillus, for which the name Paenibacillus periandrae sp. nov. is proposed. The type strain is PM10T (=LMG 28691T=CECT 8827T).


Subject(s)
Fabaceae/microbiology , Paenibacillus/classification , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , Brazil , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Molecular Sequence Data , Paenibacillus/genetics , Paenibacillus/isolation & purification , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
14.
Syst Appl Microbiol ; 38(5): 346-50, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26032249

ABSTRACT

Cicer canariense is a threatened endemic legume from the Canary Islands where it can be nodulated by mesorhizobial strains from the symbiovar ciceri, which is the common worldwide endosymbiont of Cicer arietinum linked to the genus Mesorhizobium. However, when C. canariense was cultivated in a soil from mainland Spain, where the symbiovar ciceri is present, only fast-growing rhizobial strains were unexpectedly isolated from its nodules. These strains were classified into the genus Rhizobium by analysis of the recA and atpD genes, and they were phylogenetically related to Rhizobium leguminosarum. The analysis of the nodC gene showed that the isolated strains belonged to the symbiovar trifolii that harbored a nodC allele (ß allele) different to that harbored by other strains from this symbiovar. Nodulation experiments carried out with the lacZ-labeled strain RCCHU01, representative of the ß nodC allele, showed that it induced curling of root hairs, infected them through infection threads, and formed typical indeterminate nodules where nitrogen fixation took place. This represents a case of exceptional performance between the symbiovar trifolii and a legume from the tribe Cicereae that opens up new possibilities and provides new insights into the study of rhizobia-legume symbiosis.


Subject(s)
Cicer/microbiology , Cicer/physiology , Rhizobium leguminosarum/classification , Rhizobium leguminosarum/isolation & purification , Root Nodules, Plant/microbiology , Symbiosis , Bacterial Proteins/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , N-Acetylglucosaminyltransferases/genetics , Phylogeny , Plant Root Nodulation , Rec A Recombinases/genetics , Rhizobium leguminosarum/physiology , Sequence Analysis, DNA , Sequence Homology , Spain , Transcription Factors/genetics
15.
Int J Syst Evol Microbiol ; 65(9): 2852-2858, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25999590

ABSTRACT

We isolated a strain coded Esc2Am(T) during a study focused on the microbial diversity of adult specimens of the bark beetle Hylesinus fraxini. Its 16S rRNA gene sequence had 99.4% similarity with respect to its closest relative, Pseudomonas rhizosphaerae IH5(T). The analysis of partial sequences of the housekeeping genes rpoB, rpoD and gyrB confirmed that strain Esc2Am(T) formed a cluster with P. rhizosphaerae IH5(T) clearly separated from the remaining species of the genus Pseudomonas. Strain Esc2Am(T) had polar flagella and could grow at temperatures from 4 °C to 30 °C. The respiratory quinone was Q9 and the main fatty acids were C16 : 0, C18 : 1ω7c and/or C18 : 1ω6c in summed feature 8 and C16 : 1ω7c and/or C16 : 1ω6c in summed feature 3. DNA-DNA hybridization results showed 51% relatedness with respect to P. rhizosphaerae IH5(T). Oxidase, catalase and urease-positive, the arginine dihydrolase system was present but nitrate reduction and ß-galactosidase production were negative. Aesculin hydrolysis was positive. Based on the results from the genotypic, phenotypic and chemotaxonomic analyses, we propose the classification of strain Esc2Am(T) as representing a novel species of the genus Pseudomonas, for which we propose the name Pseudomonas coleopterorum sp. nov. The type strain is Esc2Am(T) ( = LMG 28558(T)= CECT 8695(T)).


Subject(s)
Coleoptera/microbiology , Phylogeny , Pseudomonas/classification , Animals , Bacterial Typing Techniques , Base Composition , Cellulase , Czech Republic , DNA, Bacterial/genetics , Fatty Acids/chemistry , Molecular Sequence Data , Nucleic Acid Hybridization , Pseudomonas/genetics , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
PLoS One ; 10(4): e0122281, 2015.
Article in English | MEDLINE | ID: mdl-25874563

ABSTRACT

The increasing interest in the preservation of the environment and the health of consumers is changing production methods and food consumption habits. Functional foods are increasingly demanded by consumers because they contain bioactive compounds involved in health protection. In this sense biofertilization using plant probiotics is a reliable alternative to the use of chemical fertilizers, but there are few studies about the effects of plant probiotics on the yield of functional fruits and, especially, on the content of bioactive compounds. In the present work we reported that a strain of genus Phyllobacterium able to produce biofilms and to colonize strawberry roots is able to increase the yield and quality of strawberry plants. In addition, the fruits from plants inoculated with this strain have significantly higher content in vitamin C, one of the most interesting bioactive compounds in strawberries. Therefore the use of selected plant probiotics benefits the environment and human health without agronomical losses, allowing the production of highly functional foods.


Subject(s)
Bacteria/metabolism , Fruit/microbiology , Plants/microbiology , Probiotics/metabolism , Ascorbic Acid/metabolism , Bacteria/genetics , Biofilms/growth & development , Fragaria/chemistry , Fragaria/growth & development , Fragaria/microbiology , Fruit/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Host-Pathogen Interactions , Microscopy, Fluorescence , Phyllobacteriaceae/genetics , Phyllobacteriaceae/metabolism , Phyllobacteriaceae/physiology , Plant Roots/microbiology , Plants/chemistry
17.
Int J Syst Evol Microbiol ; 65(Pt 6): 1703-1708, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25736411

ABSTRACT

The species Mesorhizobim loti was isolated from nodules of Lotus corniculatus and its type strain deposited in several collections. Some of these type strains, such as those deposited in the USDA and ATCC collections before 1990, are not coincident with the original strain, NZP 2213T, deposited in the NZP culture collection. The analysis of the 16S rRNA gene showed that strains USDA 3471T and ATCC 33669T formed independent branches from that occupied by Mesorhizobium loti NZP 2213T and related to those occupied by Mesorhizobium opportunistum WSM2075T and Mesorhizobium huakuii IFO 15243T, respectively, with 99.9 % similarity in both cases. However, the analysis of concatenated recA, atpD and glnII genes with similarities lower than 96, 98 and 94 %, respectively, between strains USDA 3471T and M. opportunistum WSM2075T and between strains ATCC 33669T and M. huakuii IFO 15243T, indicated that the strains USDA 3471T and ATCC 33669T represent different species of the genus Mesorhizobium. These results were confirmed by DNA-DNA hybridization experiments and phenotypic characterization. Therefore, the two strains were reclassified as representatives of the two species Mesorhizobium erdmanii sp. nov. (type strain USDA 3471T = CECT 8631T = LMG 17826t2T) and Mesorhizobium jarvisii sp. nov. (type strain ATCC 33669T = CECT 8632T = LMG 28313T).


Subject(s)
Lotus/microbiology , Mesorhizobium/classification , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Genes, Bacterial , Mesorhizobium/genetics , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , United States , United States Department of Agriculture
18.
Int J Syst Evol Microbiol ; 65(Pt 4): 1213-1219, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25609676

ABSTRACT

The species Rhizobium lupini was isolated from Lupinus nodules and included in the Approved Lists of Bacterial Names in 1980. Nevertheless, on the basis of the analysis of the type strain of this species available in DSMZ, DSM 30140(T), whose 16S rRNA gene was identical to that of the type strain of Bradyrhizobium japonicum , R. lupini was considered a later synonym of this species. In this study we confirmed that the strain DSM 30140(T) belongs to the species B. japonicum , but also that it cannot be the original strain of R. lupini because this species effectively nodulated Lupinus whereas strain DSM 30140(T) was able to nodulate soybean but not Lupinus. Since the original type strain of R. lupini was deposited into the USDA collection by L. W. Erdman under the accession number USDA 3051(T) we analysed the taxonomic status of this strain showing that although it belongs to the genus Bradyrhizobium instead of genus Rhizobium , it is phylogenetically distant from B. japonicum and closely related to Bradyrhizobium canariense . The type strains R. lupini USDA 3051(T) and B. canariense BTA-1(T) share 16S rRNA, recA and glnII gene sequences with similarities of 99.8%, 96.5% and 97.1%, respectively. They presented a DNA-DNA hybridization value of 36% and also differed in phenotypic characteristics and slightly in the proportions of some fatty acids. Therefore we propose the reclassification of the species Rhizobium lupini as Bradyrhizobium lupini comb. nov. The type strain is USDA 3051(T) ( = CECT 8630(T) = LMG 28514(T)).


Subject(s)
Bradyrhizobium/classification , Phylogeny , Rhizobium/classification , Bacterial Typing Techniques , DNA, Bacterial/genetics , Lupinus/microbiology , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
19.
Syst Appl Microbiol ; 36(8): 565-71, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24168963

ABSTRACT

Genus Bradyrhizobium includes slow growing bacteria able to nodulate different legumes as well as species isolated from plant tumours. The slow growth presented by the members of this genus and the phylogenetic closeness of most of its species difficults their identification. In the present work we applied for the first time Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) to the analysis of Bradyrhizobium species after the extension of MALDI Biotyper 2.0 database with the currently valid species of this genus. With this methodology it was possible to identify strains belonging to phylogenetically closely related species of genus Bradyrhizobium allowing the discrimination among species with rrs gene identities higher than 99%. The application of MALDI-TOF MS to strains isolated from nodules of different Lupinus species in diverse geographical locations allowed their correct identification when comparing with the results of rrs gene and ITS analyses. The nodulation of Lupinus gredensis, an endemic species of the west of Spain, by B. canariense supports the European origin of this species.


Subject(s)
Bacteriological Techniques/methods , Bradyrhizobium/chemistry , Bradyrhizobium/classification , Lupinus/microbiology , Root Nodules, Plant/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bradyrhizobium/isolation & purification , Cluster Analysis , Phylogeny , Sequence Analysis, DNA , Spain
20.
PLoS One ; 7(11): e49520, 2012.
Article in English | MEDLINE | ID: mdl-23185349

ABSTRACT

The threatened caesalpinioid legume Dimorphandra wilsonii, which is native to the Cerrado biome in Brazil, was examined for its nodulation and N(2)-fixing ability, and was compared with another, less-threatened species, D. jorgei. Nodulation and potential N(2) fixation was shown on seedlings that had been inoculated singly with five bradyrhizobial isolates from mature D. wilsonii nodules. The infection of D. wilsonii by two of these strains (Dw10.1, Dw12.5) was followed in detail using light and transmission electron microscopy, and was compared with that of D. jorgei by Bradyrhizobium strain SEMIA6099. The roots of D. wilsonii were infected via small transient root hairs at 42 d after inoculation (dai), and nodules were sufficiently mature at 63 dai to express nitrogenase protein. Similar infection and nodule developmental processes were observed in D. jorgei. The bacteroids in mature Dimorphandra nodules were enclosed in plant cell wall material containing a homogalacturonan (pectic) epitope that was recognized by the monoclonal antibody JIM5. Analysis of sequences of their rrs (16S rRNA) genes and their ITS regions showed that the five D. wilsonii strains, although related to SEMIA6099, may constitute five undescribed species of genus Bradyrhizobium, whilst their nodD and nifH gene sequences showed that they formed clearly separated branches from other rhizobial strains. This is the first study to describe in full the N(2)-fixing symbiotic interaction between defined rhizobial strains and legumes in the sub-family Caesalpinioideae. This information will hopefully assist in the conservation of the threatened species D. wilsonii.


Subject(s)
Fabaceae/metabolism , RNA, Ribosomal, 16S/metabolism , Bacterial Proteins/metabolism , Biomass , Bradyrhizobium/metabolism , Brazil , DNA, Intergenic , Epitopes/chemistry , Likelihood Functions , Microscopy, Electron, Transmission/methods , Nitrogen/chemistry , Oxidoreductases/metabolism , Pectins/chemistry , Phylogeny , Plant Roots/metabolism , Soil , Soil Microbiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...