Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Cardiovasc Res ; 2: 144-158, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36949957

ABSTRACT

Somatic mutations in blood indicative of clonal hematopoiesis of indeterminate potential (CHIP) are associated with an increased risk of hematologic malignancy, coronary artery disease, and all-cause mortality. Here we analyze the relation between CHIP status and incident peripheral artery disease (PAD) and atherosclerosis, using whole-exome sequencing and clinical data from the UK Biobank and Mass General Brigham Biobank. CHIP associated with incident PAD and atherosclerotic disease across multiple beds, with increased risk among individuals with CHIP driven by mutation in DNA Damage Repair (DDR) genes such as TP53 and PPM1D. To model the effects of DDR-induced CHIP on atherosclerosis, we used a competitive bone marrow transplantation strategy, and generated atherosclerosis-prone Ldlr-/- chimeric mice carrying 20% p53-deficient hematopoietic cells. The chimeric mice were analyzed 13-weeks post-grafting and showed increased aortic plaque size and accumulation of macrophages within the plaque, driven by increased proliferation of p53-deficient plaque macrophages. In summary, our findings highlight the role of CHIP as a broad driver of atherosclerosis across the entire arterial system beyond the coronary arteries, and provide genetic and experimental support for a direct causal contribution of TP53-mutant CHIP to atherosclerosis.

2.
J Gastrointest Surg ; 26(2): 286-297, 2022 02.
Article in English | MEDLINE | ID: mdl-34882294

ABSTRACT

BACKGROUND: The peroxisome proliferator-activated receptor (PPAR)-γ plays a key role in adipose tissue differentiation and fat metabolism. However, it is unclear which factors may regulate its expression and whether obese patients have changes in adipose tissue expression of PPAR-γor potential regulators such as miR-27. Thus, our aims were to analyze PPAR-γ and miR-27 expression in adipose tissue of obese patients, and to correlate their levels with clinical variables. SUBJECTS AND METHODS: We included 43 morbidly obese subjects who underwent sleeve gastrectomy (31 of them completed 1-year follow-up) and 19 non-obese subjects. mRNA expression of PPAR-γ1 and PPAR-γ2, miR-27a, and miR-27b was measured by qPCR in visceral and subcutaneous adipose tissue. Clinical variables and serum adipokine and hormone levels were correlated with PPAR-γ and miR-27 expression. In addition, a systematic review of the literature regarding PPAR-γ expression in adipose tissue of obese patients was performed. RESULTS: We found no differences in the expression of PPAR-γ and miR-27 in adipose tissue of obese patients vs. controls. The literature review revealed discrepant results regarding PPAR-γ expression in adipose tissue of obese patients. Of note, we described a significant negative correlation between pre-operative PPAR-γ1 expression in adipose tissue of obese patients and post-operative weight loss, potentially linked with insulin resistance markers. CONCLUSION: PPAR-γ1 expression in adipose tissue is associated with weight loss after sleeve gastrectomy and may be used as a biomarker for response to surgery.


Subject(s)
Adipose Tissue , Obesity, Morbid , Peroxisome Proliferator-Activated Receptors , Weight Loss , Adipose Tissue/metabolism , Gastrectomy , Gene Expression , Humans , MicroRNAs , Obesity, Morbid/genetics , Obesity, Morbid/surgery , PPAR gamma , Peroxisome Proliferator-Activated Receptors/metabolism
3.
Elife ; 92020 12 08.
Article in English | MEDLINE | ID: mdl-33287957

ABSTRACT

Liver metabolism follows diurnal fluctuations through the modulation of molecular clock genes. Disruption of this molecular clock can result in metabolic disease but its potential regulation by immune cells remains unexplored. Here, we demonstrated that in steady state, neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK) inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte. Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in the liver. This study demonstrates that neutrophils contribute to the maintenance of daily hepatic homeostasis through the regulation of the NE/JNK/Bmal1 axis.


Every day, the body's biological processes work to an internal clock known as the circadian rhythm. This rhythm is controlled by 'clock genes' that are switched on or off by daily physical and environmental cues, such as changes in light levels. These daily rhythms are very finely tuned, and disturbances can lead to serious health problems, such as diabetes or high blood pressure. The ability of the body to cycle through the circadian rhythm each day is heavily influenced by the clock of one key organ: the liver. This organ plays a critical role in converting food and drink into energy. There is evidence that neutrophils ­ white blood cells that protect the body by being the first response to inflammation ­ can influence how the liver performs its role in obese people, by for example, releasing a protein called elastase. Additionally, the levels of neutrophils circulating in the blood change following a daily pattern. Crespo, González-Terán et al. wondered whether neutrophils enter the liver at specific times of the day to control liver's daily rhythm. Crespo, González-Terán et al. revealed that neutrophils visit the liver in a pattern that peaks when it gets light and dips when it gets dark by counting the number of neutrophils in the livers of mice at different times of the day. During these visits, neutrophils secreted elastase, which activated a protein called JNK in the cells of the mice's liver. This subsequently blocked the activity of another protein, FGF21, which led to the activation of the genes that allow cells to make fat molecules for storage. JNK activation also switched on the clock gene, Bmal1, ultimately causing fat to build up in the mice's liver. Crespo, González-Terán et al. also found that, in samples from human livers, the levels of elastase, the activity of JNK, and whether the Bmal1 gene was switched on were tightly linked. This suggests that neutrophils may be controlling the liver's rhythm in humans the same way they do in mice. Overall, this research shows that neutrophils can control and reset the liver's daily rhythm using a precisely co-ordinated series of molecular changes. These insights into the liver's molecular clock suggest that elastase, JNK and BmaI1 may represent new therapeutic targets for drugs or smart medicines to treat metabolic diseases such as diabetes or high blood pressure.


Subject(s)
CLOCK Proteins/metabolism , Gene Expression Regulation/physiology , Hepatocytes/metabolism , Neutrophils/physiology , Animals , CLOCK Proteins/genetics , Cells, Cultured , Circadian Rhythm , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Humans , Inflammation/metabolism , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Mice , Mice, Transgenic , Neutropenia
4.
Cell Rep ; 33(4): 108326, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33113366

ABSTRACT

Human aging is frequently accompanied by the acquisition of somatic mutations in the hematopoietic system that induce clonal hematopoiesis, leading to the development of a mutant clone of hematopoietic progenitors and leukocytes. This somatic-mutation-driven clonal hematopoiesis has been associated with an increased incidence of cardiovascular disease and type 2 diabetes, but whether this epidemiological association reflects a direct, causal contribution of mutant hematopoietic and immune cells to age-related metabolic abnormalities remains unexplored. Here, we show that inactivating mutations in the epigenetic regulator TET2, which lead to clonal hematopoiesis, aggravate age- and obesity-related insulin resistance in mice. This metabolic dysfunction is paralleled by increased expression of the pro-inflammatory cytokine IL-1ß in white adipose tissue, and it is suppressed by pharmacological inhibition of NLRP3 inflammasome-mediated IL-1ß production. These findings support a causal contribution of somatic TET2 mutations to insulin resistance and type 2 diabetes.


Subject(s)
Clonal Hematopoiesis/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism , Insulin Resistance/genetics , Obesity/genetics , Aging , Animals , Humans , Mice
5.
Front Endocrinol (Lausanne) ; 11: 572089, 2020.
Article in English | MEDLINE | ID: mdl-33424765

ABSTRACT

The complex functions of adipose tissue have been a focus of research interest over the past twenty years. Adipose tissue is not only the main energy storage depot, but also one of the largest endocrine organs in the body and carries out crucial metabolic functions. Moreover, brown and beige adipose depots are major sites of energy expenditure through the activation of adaptive, non-shivering thermogenesis. In recent years, numerous signaling molecules and pathways have emerged as critical regulators of adipose tissue, in both homeostasis and obesity-related disease. Among the best characterized are members of the p38 kinase family. The activity of these kinases has emerged as a key contributor to the biology of the white and brown adipose tissues, and their modulation could provide new therapeutic approaches against obesity. Here, we give an overview of the roles of the distinct p38 family members in adipose tissue, focusing on their actions in adipogenesis, thermogenic activity, and secretory function.


Subject(s)
Adipose Tissue/physiology , p38 Mitogen-Activated Protein Kinases/physiology , Adipogenesis , Animals , Cell Plasticity , Cell Transdifferentiation , Humans , Inflammation/etiology , Thermogenesis
6.
Nature ; 568(7753): 557-560, 2019 04.
Article in English | MEDLINE | ID: mdl-30971822

ABSTRACT

The cell cycle is a tightly regulated process that is controlled by the conserved cyclin-dependent kinase (CDK)-cyclin protein complex1. However, control of the G0-to-G1 transition is not completely understood. Here we demonstrate that p38 MAPK gamma (p38γ) acts as a CDK-like kinase and thus cooperates with CDKs, regulating entry into the cell cycle. p38γ shares high sequence homology, inhibition sensitivity and substrate specificity with CDK family members. In mouse hepatocytes, p38γ induces proliferation after partial hepatectomy by promoting the phosphorylation of retinoblastoma tumour suppressor protein at known CDK target residues. Lack of p38γ or treatment with the p38γ inhibitor pirfenidone protects against the chemically induced formation of liver tumours. Furthermore, biopsies of human hepatocellular carcinoma show high expression of p38γ, suggesting that p38γ could be a therapeutic target in the treatment of this disease.


Subject(s)
Carcinogenesis/pathology , Cell Cycle , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , Liver/enzymology , Liver/pathology , Mitogen-Activated Protein Kinase 12/metabolism , Aged , Animals , Carcinogenesis/drug effects , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Female , Hepatocytes/cytology , Hepatocytes/pathology , Humans , Liver/surgery , Liver Neoplasms/chemically induced , Male , Mice , Middle Aged , Mitogen-Activated Protein Kinase 12/antagonists & inhibitors , Phosphorylation , Pyridones/pharmacology , Retinoblastoma Protein/chemistry , Retinoblastoma Protein/metabolism , Sequence Homology , Substrate Specificity
7.
EMBO J ; 37(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30389661

ABSTRACT

Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the ß3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.


Subject(s)
Adipocytes/metabolism , Adiposity , Energy Metabolism , Fatty Liver/metabolism , Obesity/metabolism , Protein Kinase C/metabolism , Subcutaneous Fat/metabolism , 3T3-L1 Cells , Adipocytes/pathology , Animals , CCAAT-Enhancer-Binding Protein-delta/genetics , CCAAT-Enhancer-Binding Protein-delta/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Female , Humans , Male , Mice , Mice, Mutant Strains , Obesity/genetics , Obesity/pathology , Protein Kinase C/genetics , Receptors, Adrenergic, beta-3/genetics , Receptors, Adrenergic, beta-3/metabolism , Second Messenger Systems/genetics , Subcutaneous Fat/physiology
8.
PLoS Biol ; 16(7): e2004455, 2018 07.
Article in English | MEDLINE | ID: mdl-29979672

ABSTRACT

Adipose tissue has emerged as an important regulator of whole-body metabolism, and its capacity to dissipate energy in the form of heat has acquired a special relevance in recent years as potential treatment for obesity. In this context, the p38MAPK pathway has arisen as a key player in the thermogenic program because it is required for the activation of brown adipose tissue (BAT) thermogenesis and participates also in the transformation of white adipose tissue (WAT) into BAT-like depot called beige/brite tissue. Here, using mice that are deficient in p38α specifically in adipose tissue (p38αFab-KO), we unexpectedly found that lack of p38α protected against high-fat diet (HFD)-induced obesity. We also showed that p38αFab-KO mice presented higher energy expenditure due to increased BAT thermogenesis. Mechanistically, we found that lack of p38α resulted in the activation of the related protein kinase family member p38δ. Our results showed that p38δ is activated in BAT by cold exposure, and lack of this kinase specifically in adipose tissue (p38δ Fab-KO) resulted in overweight together with reduced energy expenditure and lower body and skin surface temperature in the BAT region. These observations indicate that p38α probably blocks BAT thermogenesis through p38δ inhibition. Consistent with the results obtained in animals, p38α was reduced in visceral and subcutaneous adipose tissue of subjects with obesity and was inversely correlated with body mass index (BMI). Altogether, we have elucidated a mechanism implicated in physiological BAT activation that has potential clinical implications for the treatment of obesity and related diseases such as diabetes.


Subject(s)
Adipose Tissue, Brown/enzymology , Adipose Tissue, Brown/physiology , Mitogen-Activated Protein Kinase 13/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Thermogenesis , Adipocytes, Brown/enzymology , Adult , Animals , Body Mass Index , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/prevention & control , Diet , Energy Metabolism , Enzyme Activation , Humans , MAP Kinase Signaling System , Male , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 13/metabolism , Models, Biological , Obesity/enzymology , Obesity/prevention & control , Uncoupling Protein 1/metabolism
9.
Nat Commun ; 8(1): 856, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021624

ABSTRACT

Increasing the thermogenic capacity of adipose tissue to enhance organismal energy expenditure is considered a promising therapeutic strategy to combat obesity. Here, we report that expression of the p38 MAPK activator MKK6 is elevated in white adipose tissue of obese individuals. Using knockout animals and shRNA, we show that Mkk6 deletion increases energy expenditure and thermogenic capacity of white adipose tissue, protecting mice against diet-induced obesity and the development of diabetes. Deletion of Mkk6 increases T3-stimulated UCP1 expression in adipocytes, thereby increasing their thermogenic capacity. Mechanistically, we demonstrate that, in white adipose tissue, p38 is activated by an alternative pathway involving AMPK, TAK, and TAB. Our results identify MKK6 in adipocytes as a potential therapeutic target to reduce obesity.Brown and beige adipose tissues dissipate heat via uncoupling protein 1 (UCP1). Here the authors show that the stress activated kinase MKK6 acts as a repressor of UCP1 expression, suggesting that its inhibition promotes adipose tissue browning and increases organismal energy expenditure.


Subject(s)
Adipose Tissue, White/enzymology , MAP Kinase Kinase 6/metabolism , Obesity/enzymology , Uncoupling Protein 1/metabolism , Adipocytes, White/metabolism , Adult , Aged , Animals , Case-Control Studies , Diabetes Mellitus/etiology , Diet, High-Fat , Energy Metabolism , Female , Humans , MAP Kinase Signaling System , Male , Metabolic Syndrome/etiology , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Obesity/etiology , Triiodothyronine/physiology , Ventromedial Hypothalamic Nucleus/metabolism
11.
Nat Commun ; 8: 15111, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28480888

ABSTRACT

p53 family members control several metabolic and cellular functions. The p53 ortholog p63 modulates cellular adaptations to stress and has a major role in cell maintenance and proliferation. Here we show that p63 regulates hepatic lipid metabolism. Mice with liver-specific p53 deletion develop steatosis and show increased levels of p63. Down-regulation of p63 attenuates liver steatosis in p53 knockout mice and in diet-induced obese mice, whereas the activation of p63 induces lipid accumulation. Hepatic overexpression of N-terminal transactivation domain TAp63 induces liver steatosis through IKKß activation and the induction of ER stress, the inhibition of which rescues the liver functions. Expression of TAp63, IKKß and XBP1s is also increased in livers of obese patients with NAFLD. In cultured human hepatocytes, TAp63 inhibition protects against oleic acid-induced lipid accumulation, whereas TAp63 overexpression promotes lipid storage, an effect reversible by IKKß silencing. Our findings indicate an unexpected role of the p63/IKKß/ER stress pathway in lipid metabolism and liver disease.


Subject(s)
Endoplasmic Reticulum Stress , Fatty Liver/metabolism , I-kappa B Kinase/metabolism , Liver/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Adult , Animals , Fatty Liver/genetics , Fatty Liver/physiopathology , Female , Hepatocytes/metabolism , Humans , I-kappa B Kinase/genetics , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Phosphoproteins/genetics , Phosphoproteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
12.
EMBO J ; 35(5): 536-52, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26843485

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a major health problem and the main cause of liver disease in Western countries. Although NAFLD is strongly associated with obesity and insulin resistance, its pathogenesis remains poorly understood. The disease begins with an excessive accumulation of triglycerides in the liver, which stimulates an inflammatory response. Alternative p38 mitogen-activated kinases (p38γ and p38δ) have been shown to contribute to inflammation in different diseases. Here we demonstrate that p38δ is elevated in livers of obese patients with NAFLD and that mice lacking p38γ/δ in myeloid cells are resistant to diet-induced fatty liver, hepatic triglyceride accumulation and glucose intolerance. This protective effect is due to defective migration of p38γ/δ-deficient neutrophils to the damaged liver. We further show that neutrophil infiltration in wild-type mice contributes to steatosis development by means of inflammation and liver metabolic changes. Therefore, p38γ and p38δ in myeloid cells provide a potential target for NAFLD therapy.


Subject(s)
Liver/metabolism , Mitogen-Activated Protein Kinase 12/metabolism , Mitogen-Activated Protein Kinase 13/metabolism , Neutrophil Infiltration , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Adult , Aged , Animals , Female , Glucose Intolerance , Humans , Male , Mice, Knockout , Middle Aged , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 12/immunology , Mitogen-Activated Protein Kinase 13/genetics , Mitogen-Activated Protein Kinase 13/immunology , Non-alcoholic Fatty Liver Disease/immunology , Obesity/immunology , RNA, Messenger/metabolism , Triglycerides/metabolism
13.
Am J Pathol ; 185(6): 1769-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25913075

ABSTRACT

Retinopathy of prematurity is a sight-threatening complication of premature birth caused by nitro-oxidative insult to the developing retinal vasculature during therapeutic hyperoxia exposure and later ischemia-induced neovascularization on supplemental oxygen withdrawal. In the vasodegenerative phase, during hyperoxia, defective endothelial nitric oxide synthase (NOS) produces reactive oxygen and nitrogen free radicals rather than vasoprotective nitric oxide for unclear reasons. Crucially, normal NOS function depends on availability of the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4). Because BH4 synthesis is controlled enzymatically by GTP cyclohydrolase (GTPCH), we used GTPCH-depleted mice [hyperphenylalaninemia strain (hph1)] to investigate the impact of hyperoxia on BH4 bioavailability and retinal vascular pathology in the neonate. Hyperoxia decreased BH4 in retinas, lungs, and aortas in all experimental groups, resulting in a dose-dependent decrease in NOS activity and, in the wild-type group, elevated NOS-derived superoxide. Retinal dopamine levels were similarly diminished, consistent with the dependence of tyrosine hydroxylase on BH4. Despite greater depletion of BH4, the hph(+/-) and hph1(-/-) groups did not show exacerbated hyperoxia-induced vessel closure, but exhibited greater vascular protection and reduced progression to neovascular disease. This vasoprotective effect was independent of enhanced circulating vascular endothelial growth factor (VEGF), which was reduced by hyperoxia, but to local retinal ganglion cell layer-derived VEGF. In conclusion, a constitutively higher level of VEGF expression associated with retinal development protects GTPCH-deficient neonates from oxygen-induced vascular damage.


Subject(s)
Biopterins/analogs & derivatives , Hyperoxia/metabolism , Nitric Oxide Synthase/metabolism , Retina/metabolism , Retinopathy of Prematurity/metabolism , Animals , Biopterins/metabolism , Female , Hyperoxia/pathology , Male , Mice , Retina/pathology , Retinopathy of Prematurity/pathology , Vascular Endothelial Growth Factor A/metabolism
14.
J Clin Invest ; 123(1): 164-78, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23202732

ABSTRACT

Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Peptide Chain Elongation, Translational/drug effects , Peptide Elongation Factor 2/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Humans , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/genetics , MAP Kinase Kinase 6/metabolism , MAP Kinase Signaling System/genetics , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 12/metabolism , Mitogen-Activated Protein Kinase 13/genetics , Mitogen-Activated Protein Kinase 13/metabolism , Peptide Chain Elongation, Translational/genetics , Peptide Elongation Factor 2/genetics , Tumor Necrosis Factor-alpha/genetics
15.
J Nutr Biochem ; 23(6): 685-90, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21840193

ABSTRACT

The effects of polyunsaturated n-6 linoleic acid on monocyte-endothelial interactions were investigated with particular emphasis on the expression of platelet/endothelial cell adhesion molecule (PECAM)-1 and the role of protein kinase C (PKC) and cyclooxygenase-2 (COX-2). As a diet rich in polyunsaturated fatty acids may favour atherosclerosis in hyperglycaemia, this study was performed in both normal and high-glucose media using human aortic endothelial cells (HAEC). The HAEC were preincubated with normal (5 mM) or high (25 mM) D-glucose for 3 days before addition of fatty acids (0.2 mM) for 3 days. Linoleic acid enhanced PECAM-1 expression independently of tumor necrosis factor (TNF)-α and significantly increased TNF-α-induced monocyte adhesion to HAEC in comparison to the monounsaturated n-9 oleic acid. Chronic glucose treatment (25 mM, 6 days) did not modify the TNF-α-induced or fatty acid-induced changes in monocyte binding. The increase in monocyte binding was accompanied by a significant increase in E-selectin and vascular cell adhesion molecule (VCAM)-1 expression and could be abrogated by an interleukin (IL)-8 neutralising antibody and by the PKC and COX inhibitors. Inhibition of PKC-δ reduced VCAM-1 expression regardless of experimental condition and was accompanied by a significant decrease in monocyte binding. Conditioned medium from linoleic acid-treated HAEC grown in normal glucose conditions significantly increased THP-1 chemotaxis. These results suggest that linoleic acid-induced changes in monocyte chemotaxis and subsequent binding are not solely mediated by changes in adhesion molecule expression but may be due to secreted factors such as IL-8, monocyte chemoattractant protein-1 or prostaglandins (PGs) such as PGE(2), as IL-8 neutralisation and COX-2 inhibition reduced monocyte binding without changes in adhesion molecule expression.


Subject(s)
Cell Adhesion Molecules/drug effects , Chemotaxis, Leukocyte/drug effects , Cyclooxygenase 2/genetics , Endothelial Cells/drug effects , Linoleic Acid/pharmacology , Monocytes/drug effects , Protein Kinase C/metabolism , Aorta/cytology , Aorta/drug effects , Aorta/metabolism , Blood Glucose/analysis , Cells, Cultured , Chemokine CCL2/metabolism , Cyclooxygenase 2/metabolism , E-Selectin/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Interleukin-8/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
16.
Am J Nephrol ; 34(2): 104-14, 2011.
Article in English | MEDLINE | ID: mdl-21701161

ABSTRACT

BACKGROUND: Apoptosis and inflammatory/oxidative stress have been associated with hyperglycemia in human peritoneal mesothelial cells (HPMCs) and other cell types. We and others have highlighted the role of early products of non-enzymatic protein glycation in inducing proinflammatory conditions and increasing apoptotic rates in HPMCs. Loss of HPMCs seems to be a hallmark of complications associated with peritoneal membrane dysfunction. The aim of this work is to elucidate the mechanisms by which Amadori adducts may act upon HPMC apoptosis. METHODS: HPMCs isolated from different patients were exposed to different Amadori adducts, i.e. highly glycated hemoglobin (10 nM) and glycated bovine serum albumin (250 µg/ml), to study cell death and several proapoptotic markers by different experimental approaches. RESULTS: Amadori adducts, but not their respective controls, impaired cell proliferation and cell viability by means of apoptosis in a time-dependent manner. They regulated the intrinsic mitochondrial cell death signaling pathway and modulated activation of caspases, Bax, iNOS, p53, NF-κB, and mitogen-activated protein kinases (p38 and JNK) through different reactive oxygen and nitrosative species. CONCLUSIONS: Our data strongly support the idea that long-term hyperglycemia could act as an inducer of apoptosis in HPMCs through Amadori adducts, involving different oxidative and nitrosative reactive species.


Subject(s)
Apoptosis , Epithelium/pathology , Glycolipids/pharmacology , Nitrogen/metabolism , Oxidative Stress , Phosphatidylethanolamines/pharmacology , Animals , Cattle , Cell Death , Cytochromes c/metabolism , Humans , Hyperglycemia/metabolism , Inflammation , L-Lactate Dehydrogenase/metabolism , MAP Kinase Signaling System , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction
17.
Invest Ophthalmol Vis Sci ; 51(12): 6815-25, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20702831

ABSTRACT

PURPOSE: Disturbances to the cellular production of nitric oxide (NO) and superoxide (O(2)(-)) can have deleterious effects on retinal vascular integrity and angiogenic signaling. Dietary agents that could modulate the production of these signaling molecules from their likely enzymatic sources, endothelial nitric oxide synthase (eNOS) and NADPH oxidase, would therefore have a major beneficial effect on retinal vascular disease. The effect of ω-3 polyunsaturated fatty acids (PUFAs) on angiogenic signaling and NO/superoxide production in retinal microvascular endothelial cells (RMECs) was investigated. METHODS: Primary RMECs were treated with docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) for 48 hours. RMEC migration was determined by scratch-wound assay, proliferation by the incorporation of BrdU, and angiogenic sprouting using a three-dimensional model of in vitro angiogenesis. NO production was quantified by Griess assay, and phospho-eNOS accumulation and superoxide were measured using the fluorescent probe dihydroethidine. eNOS localization to caveolin-rich microdomains was determined by Western blot analysis after subfractionation on a linear sucrose gradient. RESULTS: DHA treatment increased nitrite and decreased superoxide production, which correlated with the displacement of eNOS from caveolar subdomains and colocalization with the negative regulator caveolin-1. In addition, both ω-3 PUFAs demonstrated reduced responsiveness to VEGF-stimulated superoxide and nitrite release and significantly impaired endothelial wound healing, proliferation, and angiogenic sprout formation. CONCLUSIONS: DHA improves NO bioavailability, decreases O(2)(-) production, and blunts VEGF-mediated angiogenic signaling. These findings suggest a role for ω-3 PUFAs, particularly DHA, in maintaining vascular integrity while reducing pathologic retinal neovascularization.


Subject(s)
Docosahexaenoic Acids/pharmacology , Endothelium, Vascular/drug effects , Neovascularization, Pathologic/prevention & control , Nitric Oxide/metabolism , Signal Transduction/drug effects , Superoxides/metabolism , Vascular Endothelial Growth Factor A/toxicity , Animals , Apoptosis , Blotting, Western , Cattle , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Eicosapentaenoic Acid/pharmacology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Fluorescent Dyes , In Situ Nick-End Labeling , Neovascularization, Pathologic/pathology , Nitric Oxide Synthase Type III/metabolism , Nitrosation , Oxidation-Reduction , Retinal Vessels/cytology , Wound Healing/drug effects
18.
PLoS One ; 5(4): e10091, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20386708

ABSTRACT

BACKGROUND: Hyperglycemia is acknowledged as an independent risk factor for developing diabetes-associated atherosclerosis. At present, most therapeutic approaches are targeted at a tight glycemic control in diabetic patients, although this fails to prevent macrovascular complications of the disease. Indeed, it remains highly controversial whether or not the mere elevation of extracellular D-glucose can directly promote vascular inflammation, which favors early pro-atherosclerotic events. METHODS AND FINDINGS: In the present work, increasing extracellular D-glucose from 5.5 to 22 mmol/L was neither sufficient to induce intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression, analyzed by flow cytometry, nor to promote leukocyte adhesion to human umbilical vein endothelial cells (HUVEC) in vitro, measured by flow chamber assays. Interestingly, the elevation of D-glucose levels potentiated ICAM-1 and VCAM-1 expression and leukocyte adhesion induced by a pro-inflammatory stimulus, such as interleukin (IL)-1beta (5 ng/mL). In HUVEC, high D-glucose augmented the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and nuclear transcription factor-kappaB (NF-kappaB) elicited by IL-1beta, measured by Western blot and electromobility shift assay (EMSA), respectively, but had no effect by itself. Both ERK 1/2 and NF-kappaB were necessary for VCAM-1 expression, but not for ICAM-1 expression. In vivo, leukocyte trafficking was evaluated in the rat mesenteric microcirculation by intravital microscopy. In accordance with the in vitro data, the acute intraperitoneal injection of D-glucose increased leukocyte rolling flux, adhesion and migration, but only when IL-1beta was co-administered. CONCLUSIONS: These results indicate that the elevation of extracellular D-glucose levels is not sufficient to promote vascular inflammation, and they highlight the pivotal role of a pro-inflammatory environment in diabetes, as a critical factor conditioning the early pro-atherosclerotic actions of hyperglycemia.


Subject(s)
Endothelium, Vascular/metabolism , Glucose/metabolism , Hyperglycemia/pathology , Inflammation/pathology , Microvessels/metabolism , Adhesiveness , Animals , Cell Adhesion , Chemotaxis, Leukocyte , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Endothelium, Vascular/pathology , Glucose/adverse effects , Humans , Inflammation/chemically induced , Leukocyte Rolling , Rats , Umbilical Veins
19.
Invest Ophthalmol Vis Sci ; 51(6): 3291-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20107169

ABSTRACT

PURPOSE: Neovascularization occurs in response to tissue ischemia and growth factor stimulation. In ischemic retinopathies, however, new vessels fail to restore the hypoxic tissue; instead, they infiltrate the transparent vitreous. In a model of oxygen-induced retinopathy (OIR), TNFalpha and iNOS, upregulated in response to tissue ischemia, are cytotoxic and inhibit vascular repair. The aim of this study was to investigate the mechanism for this effect. METHODS: Wild-type C57/BL6 (WT) and TNFalpha(-/-) mice were subjected to OIR by exposure to 75% oxygen (postnatal days 7-12). The retinas were removed during the hypoxic phase of the model. Retinal cell death was determined by TUNEL staining, and the microglial cells were quantified after Z-series capture with a confocal microscope. In situ peroxynitrite and superoxide were measured by using the fluorescent dyes DCF and DHE. iNOS, nitrotyrosine, and arginase were analyzed by real-time PCR, Western blot analysis, and activity determined by radiolabeled arginine conversion. Astrocyte coverage was examined after GFAP immunostaining. RESULTS: The TNFalpha(-/-) animals displayed a significant reduction in TUNEL-positive apoptotic cells in the inner nuclear layer of the avascular retina compared with that in the WT control mice. The reduction coincided with enhanced astrocytic survival and an increase in microglial cells actively engaged in phagocytosing apoptotic debris that displayed low ROS, RNS, and NO production and high arginase activity. CONCLUSIONS: Collectively, the results suggest that improved vascular recovery in the absence of TNFalpha is associated with enhanced astrocyte survival and that both phenomena are dependent on preservation of microglial cells that display an anti-inflammatory phenotype during the early ischemic phase of OIR.


Subject(s)
Ischemia/metabolism , Microglia/cytology , Oxidative Stress , Retinal Diseases/metabolism , Retinal Neurons/pathology , Retinal Vessels/metabolism , Tumor Necrosis Factor-alpha/physiology , Animals , Apoptosis , Arginase/metabolism , Blotting, Western , Cell Count , Cell Death , Cell Survival , In Situ Nick-End Labeling , Ischemia/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/metabolism , Nitrosation , Oxygen/toxicity , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Retinal Diseases/pathology , Reverse Transcriptase Polymerase Chain Reaction , Tyrosine/analogs & derivatives , Tyrosine/metabolism
20.
J Hypertens ; 26(3): 478-85, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18300858

ABSTRACT

OBJECTIVES: The present study investigated whether high concentrations of D-glucose can trigger pro-inflammatory mechanisms in human aortic smooth muscle cells. METHODS: The expression and/or the activity of inducible nitric oxide synthase (iNOS), the extracellular signal-regulated kinase (ERK) 1/2 and nuclear factor (NF)-kappaB were studied in cultured human aortic smooth muscle cells (HASMC) in response to increasing concentrations of D-glucose and/or the inflammatory cytokine interleukin (IL)-1beta. RESULTS: Increasing D-glucose in the medium from 5.5 to 22 mmol/l had no effect on any of these parameters. However, the high concentration of D-glucose did increase iNOS expression in response to low concentrations of IL-1beta (2.5 and 5 ng/ml), as well as the IL-1beta-induced activation of both ERK 1/2 and NF-kappaB. D-glucose also enhanced, concentration-dependently, the expression and activity of iNOS induced by co-incubation with IL-1beta (10 ng/ml). Pretreatment with IL-1beta sensitized the cells to the subsequent effects of high D-glucose. CONCLUSIONS: The results indicate that high concentrations of D-glucose exacerbate the pro-inflammatory effects of IL-1beta. We suggest that the observed association between inflammation and diabetes is the result of elevated D-glucose enhancing a pre-existing inflammatory condition, rather than a direct effect of D-glucose on the production of inflammatory mediators.


Subject(s)
Glucose/pharmacology , Myocytes, Smooth Muscle/metabolism , NF-kappa B/biosynthesis , Nitric Oxide Synthase/biosynthesis , Phosphotransferases/biosynthesis , Aorta , Cells, Cultured , Gene Expression , Humans , Interleukin-1beta/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/immunology , Myocytes, Smooth Muscle/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...