Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Chest ; 163(4): 861-869, 2023 04.
Article in English | MEDLINE | ID: mdl-36470416

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA)-associated interstitial lung disease (ILD) is common in patients with RA and leads to significant morbidity and mortality. No randomized, placebo-controlled data are available that support the role of immunosuppression to treat RA-associated ILD, despite being widely used in clinical practice. RESEARCH QUESTION: How does immunosuppression impact pulmonary function trajectory in a multisite retrospective cohort of patients with RA-associated ILD? STUDY DESIGN AND METHODS: Patients with RA who started treatment for ILD with mycophenolate, azathioprine, or rituximab were identified retrospectively from five ILD centers. Change in lung function before and after treatment was analyzed using a linear spline mixed-effect model with random intercept. Prespecified secondary analyses examined the impact of radiologic pattern of ILD (ie, usual interstitial pneumonia [UIP] vs non-UIP) on treatment trajectory. RESULTS: Two hundred twelve patients were included in the analysis: 92 patients (43.4%) were treated with azathioprine, 77 patients (36.3%) were treated with mycophenolate mofetil, and 43 patients (20.3%) were treated with rituximab. In the combined analysis of all three agents, an improvement in FVC % predicted was found after 12 months of treatment compared with the potential 12-month response without treatment (+3.90%; P ≤ .001; 95% CI, 1.95-5.84). Diffusing capacity of the lungs for carbon monoxide (Dlco) % predicted also improved at 12 months (+4.53%; P ≤ .001; 95% CI, 2.12-6.94). Neither the UIP pattern of ILD nor choice of immunosuppressive agent significantly impacted the pulmonary function trajectory on immunosuppression. INTERPRETATION: Immunosuppression was associated with an improved trajectory in FVC and Dlco compared with the pretreatment pulmonary function trajectory. Prospective, randomized trials are required to validate these findings.


Subject(s)
Arthritis, Rheumatoid , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Azathioprine/therapeutic use , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Lung/diagnostic imaging , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/etiology , Prospective Studies , Retrospective Studies , Rituximab/therapeutic use , Treatment Outcome , Vital Capacity
2.
Am J Respir Crit Care Med ; 207(5): 587-593, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36094461

ABSTRACT

Rationale: Relatives of patients with familial interstitial pneumonia (FIP) are at increased risk for pulmonary fibrosis and develop preclinical pulmonary fibrosis (PrePF). Objectives: We defined the incidence and progression of new-onset PrePF and its relationship to survival among first-degree relatives of families with FIP. Methods: This is a cohort study of family members with FIP who were initially screened with a health questionnaire and chest high-resolution computed tomography (HRCT) scan, and approximately 4 years later, the evaluation was repeated. A total of 493 asymptomatic first-degree relatives of patients with FIP were evaluated at baseline, and 296 (60%) of the original subjects participated in the subsequent evaluation. Measurements and Main Results: The median interval between HRCTs was 3.9 years (interquartile range, 3.5-4.4 yr). A total of 252 subjects who agreed to repeat evaluation were originally determined not to have PrePF at baseline; 16 developed PrePF. A conservative estimate of the annual incidence of PrePF is 1,023 per 100,000 person-years (95% confidence interval, 511-1,831 per 100,000 person-years). Of 44 subjects with PrePF at baseline, 38.4% subjects had worsening dyspnea compared with 15.4% of those without PrePF (P = 0.002). Usual interstitial pneumonia by HRCT (P < 0.0002) and baseline quantitative fibrosis score (P < 0.001) are also associated with worsening dyspnea. PrePF at the initial screen is associated with decreased survival (P < 0.001). Conclusions: The incidence of PrePF in this at-risk population is at least 100-fold higher than that reported for sporadic idiopathic pulmonary fibrosis (IPF). Although PrePF and IPF represent distinct entities, our study demonstrates that PrePF, like IPF, is progressive and associated with decreased survival.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Cohort Studies , Incidence , Dyspnea , Lung , Retrospective Studies
4.
Am J Respir Cell Mol Biol ; 67(2): 188-200, 2022 08.
Article in English | MEDLINE | ID: mdl-35608953

ABSTRACT

We previously identified a novel molecular subtype of idiopathic pulmonary fibrosis (IPF) defined by increased expression of cilium-associated genes, airway mucin gene MUC5B, and KRT5 marker of basal cell airway progenitors. Here we show the association of MUC5B and cilia gene expression in human IPF airway epithelial cells, providing further rationale for examining the role of cilium genes in the pathogenesis of IPF. We demonstrate increased multiciliogenesis and changes in motile cilia structure of multiciliated cells both in IPF and bleomycin lung fibrosis models. Importantly, conditional deletion of a cilium gene, Ift88 (intraflagellar transport 88), in Krt5 basal cells reduces Krt5 pod formation and lung fibrosis, whereas no changes are observed in Ift88 conditional deletion in club cell progenitors. Our findings indicate that aberrant injury-activated primary ciliogenesis and Hedgehog signaling may play a causative role in Krt5 pod formation, which leads to aberrant multiciliogenesis and lung fibrosis. This implies that modulating cilium gene expression in Krt5 cell progenitors is a potential therapeutic target for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Bleomycin/toxicity , Cilia/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Idiopathic Pulmonary Fibrosis/pathology , Signal Transduction
5.
Am J Transplant ; 22(4): 1261-1265, 2022 04.
Article in English | MEDLINE | ID: mdl-34910857

ABSTRACT

An unvaccinated adult male heart transplant recipient patient with recalcitrant COVID-19 due to SARS-CoV-2 delta variant with rising nasopharyngeal quantitative viral load was successfully treated with ALVR109, an off-the-shelf SARS-CoV-2-specific T cell therapy. Background immunosuppression included 0.1 mg/kg prednisone, tacrolimus, and mycophenolate mofetil 1 gm twice daily for historical antibody-mediated rejection. Prior therapies included remdesivir, corticosteroids, and tocilizumab, with requirement for high-flow nasal oxygen. Lack of clinical improvement and acutely rising nasopharyngeal viral RNA more than 3 weeks into illness prompted the request of ALVR109 through an emergency IND. The day following the first ALVR109 infusion, the patient's nasopharyngeal SARS-CoV-2 RNA declined from 7.43 to 5.02 log10 RNA copies/ml. On post-infusion day 4, the patient transitioned to low-flow oxygen. Two subsequent infusions of ALVR109 were administered 10 and 26 days after the first; nasopharyngeal SARS-CoV-2 RNA became undetectable on Day 11, and he was discharged the following day on low-flow oxygen 5 weeks after the initial diagnosis of COVID-19. The clinical and virologic improvements observed in this patient following administration of ALVR109 suggest a potential benefit that warrants further exploration in clinical trials.


Subject(s)
COVID-19 , Heart Transplantation , Adult , Cell- and Tissue-Based Therapy , Humans , Male , RNA, Viral/genetics , SARS-CoV-2
6.
BMC Pulm Med ; 21(1): 422, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930198

ABSTRACT

BACKGROUND: Self-administration of helminths has gained attention among patients as a potential but unproven therapy for autoimmune disease. We present a case of rapidly progressive respiratory failure in a patient with systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH) as a result of self-administration of parasitic organisms. CASE: A 45-year-old woman with a history of interstitial lung disease and PAH due to limited cutaneous SSc presented to pulmonary clinic with worsening dyspnea, cough, and new onset hypoxemia. Three months prior to presentation she started oral helminth therapy with Necator americanus as an alternative treatment for SSc. Laboratory evaluation revelaed eosinophilia and elevated IgE levels. IgG antibodies to Strongyloides were detected. High resolution computed tomography of the chest revealed progressive ILD and new diffuse ground glass opacities. Transthoracic echocardiogram and right heart catheterization illustrated worsening PAH and right heart failure. The patient was admitted to the hospital and emergently evaluated for lung transplantation but was not a candidate for transplantation due to comorbidities. Despite aggressive treatment for PAH and right heart failure, her respiratory status deteriorated, and the patient transitioned to comfort-focused care. CONCLUSION: Although ingestion of helminths poses a risk of infection, helminth therapy has been investigated as a potential treatment for autoimmune diseases. In this case, self-prescribed helminth ingestion precipitated fatal acute worsening of lung inflammation, hypoxemia, and right heart dysfunction, highlighting the risk of experimental helminth therapy in patients, especially those with underlying respiratory disease.


Subject(s)
Heart Failure/parasitology , Necator americanus , Respiratory Insufficiency/parasitology , Scleroderma, Systemic/therapy , Self Care/adverse effects , Therapy with Helminths/adverse effects , Administration, Oral , Animals , Disease Progression , Fatal Outcome , Female , Heart Failure/diagnosis , Humans , Middle Aged , Pulmonary Arterial Hypertension/complications , Respiratory Insufficiency/diagnosis , Scleroderma, Systemic/complications , Self Care/methods , Therapy with Helminths/methods
7.
IDCases ; 23: e01019, 2021.
Article in English | MEDLINE | ID: mdl-33376674

ABSTRACT

We present a case of a 57-year-old man who underwent bilateral lung transplantation for idiopathic pulmonary fibrosis. His immediately post-operative course was complicated by fever and cardiac arrest. Despite supportive care and broad-spectrum antibiotics, he experienced continued clinical decline. Autopsy results indicated angioinvasive mucormycosis and coronary arteritis resulting in acute myocardial infarction as the cause of death.

9.
Alcohol Clin Exp Res ; 44(8): 1571-1584, 2020 08.
Article in English | MEDLINE | ID: mdl-32524622

ABSTRACT

BACKGROUND: Alcohol use disorders (AUDs) and cigarette smoking both increase risk for the development of community-acquired pneumonia (CAP), likely through adverse effects on proximal airway mucociliary clearance and pathogen recognition. Smoking-related alterations on airway gene expression are well described, but little is known about the impact of AUDs. We measured gene expression in human airway epithelial cells (AECs), hypothesizing that AUDs would be associated with novel differences in gene expression that could alter risk for CAP. METHODS: Bronchoscopy with airway brushings was performed in participants with AUDs and controls to obtain AECs. An AUD Identification Test was used to define AUD. RNA was extracted from AECs, and mRNA expression data were collected on an Agilent micro-array. Differential expression analyses were performed on the filtered and normalized data with correction for multiple testing. Enrichment analyses were performed using clusterProfiler. RESULTS: Expression data from 19 control and 18 AUD participants were evaluated. After adjustment for smoking, AUDs were associated with significant differential expression of 520 AEC genes, including genes for ribosomal proteins and genes involved in protein folding. Enrichment analyses indicated significant differential expression of 24 pathways in AUDs, including those implicated in protein targeting to membrane and viral gene expression. Smoking-associated AEC gene expression differences mirrored previous reports, but differed from those associated with AUDs. CONCLUSIONS: AUDs have a distinct impact on AEC gene expression that may influence proximal airway function independent of smoking. Alcohol-associated alterations may influence risk for CAP through modifying key mechanisms important in protecting proximal airway integrity.


Subject(s)
Alcoholism/genetics , Epithelial Cells/metabolism , Gene Expression , RNA, Messenger/metabolism , Respiratory Mucosa/cytology , Adult , Alcoholism/metabolism , Bronchoscopy , Case-Control Studies , Cigarette Smoking/genetics , Cigarette Smoking/metabolism , Community-Acquired Infections , Female , Humans , Male , Middle Aged , Pneumonia , Risk Factors , Transcriptome
10.
Thorax ; 74(12): 1131-1139, 2019 12.
Article in English | MEDLINE | ID: mdl-31558622

ABSTRACT

BACKGROUND: Relatives of patients with familial interstitial pneumonia (FIP) are at increased risk for pulmonary fibrosis. We assessed the prevalence and risk factors for preclinical pulmonary fibrosis (PrePF) in first-degree relatives of patients with FIP and determined the utility of deep learning in detecting PrePF on CT. METHODS: First-degree relatives of patients with FIP over 40 years of age who believed themselves to be unaffected by pulmonary fibrosis underwent CT scans of the chest. Images were visually reviewed, and a deep learning algorithm was used to quantify lung fibrosis. Genotyping for common idiopathic pulmonary fibrosis risk variants in MUC5B and TERT was performed. FINDINGS: In 494 relatives of patients with FIP from 263 families of patients with FIP, the prevalence of PrePF on visual CT evaluation was 15.6% (95% CI 12.6 to 19.0). Compared with visual CT evaluation, deep learning quantitative CT analysis had 84% sensitivity (95% CI 0.72 to 0.89) and 86% sensitivity (95% CI 0.83 to 0.89) for discriminating subjects with visual PrePF diagnosis. Subjects with PrePF were older (65.9, SD 10.1 years) than subjects without fibrosis (55.8 SD 8.7 years), more likely to be male (49% vs 37%), more likely to have smoked (44% vs 27%) and more likely to have the MUC5B promoter variant rs35705950 (minor allele frequency 0.29 vs 0.21). MUC5B variant carriers had higher quantitative CT fibrosis scores (mean difference of 0.36%), a difference that remains significant when controlling for age and sex. INTERPRETATION: PrePF is common in relatives of patients with FIP. Its prevalence increases with age and the presence of a common MUC5B promoter variant. Quantitative CT analysis can detect these imaging abnormalities.


Subject(s)
Genetic Variation , Idiopathic Pulmonary Fibrosis/genetics , Mucin-5B/genetics , Aged , Algorithms , Colorado/epidemiology , Deep Learning , Female , Genetic Predisposition to Disease , Humans , Idiopathic Interstitial Pneumonias/diagnostic imaging , Idiopathic Interstitial Pneumonias/epidemiology , Idiopathic Interstitial Pneumonias/genetics , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/epidemiology , Male , Middle Aged , Prevalence , Promoter Regions, Genetic/genetics , ROC Curve , Risk Factors , Telomerase/genetics , Tomography, X-Ray Computed
11.
Am J Respir Crit Care Med ; 200(2): 199-208, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31034279

ABSTRACT

Rationale: Several common and rare genetic variants have been associated with idiopathic pulmonary fibrosis, a progressive fibrotic condition that is localized to the lung. Objectives: To develop an integrated understanding of the rare and common variants located in multiple loci that have been reported to contribute to the risk of disease. Methods: We performed deep targeted resequencing (3.69 Mb of DNA) in cases (n = 3,624) and control subjects (n = 4,442) across genes and regions previously associated with disease. We tested for associations between disease and 1) individual common variants via logistic regression and 2) groups of rare variants via sequence kernel association tests. Measurements and Main Results: Statistically significant common variant association signals occurred in all 10 of the regions chosen based on genome-wide association studies. The strongest risk variant is the MUC5B promoter variant rs35705950, with an odds ratio of 5.45 (95% confidence interval, 4.91-6.06) for one copy of the risk allele and 18.68 (95% confidence interval, 13.34-26.17) for two copies of the risk allele (P = 9.60 × 10-295). In addition to identifying for the first time that rare variation in FAM13A is associated with disease, we confirmed the role of rare variation in the TERT and RTEL1 gene regions in the risk of IPF, and found that the FAM13A and TERT regions have independent common and rare variant signals. Conclusions: A limited number of common and rare variants contribute to the risk of idiopathic pulmonary fibrosis in each of the resequencing regions, and these genetic variants focus on biological mechanisms of host defense and cell senescence.


Subject(s)
Cellular Senescence/genetics , Host-Pathogen Interactions/genetics , Idiopathic Pulmonary Fibrosis/genetics , ATP-Binding Cassette Transporters/genetics , Case-Control Studies , DNA Helicases/genetics , Exoribonucleases/genetics , Female , GTPase-Activating Proteins/genetics , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Logistic Models , Male , Mucin-5B/genetics , Promoter Regions, Genetic/genetics , Pulmonary Surfactant-Associated Protein A/genetics , Pulmonary Surfactant-Associated Protein C/genetics , RNA/genetics , Sequence Analysis, DNA , Telomerase/genetics , Telomere-Binding Proteins/genetics
12.
Transl Res ; 209: 1-13, 2019 07.
Article in English | MEDLINE | ID: mdl-30768925

ABSTRACT

Pulmonary fibrosis refers to the development of diffuse parenchymal abnormalities in the lung that cause dyspnea, cough, hypoxemia, and impair gas exchange, ultimately leading to respiratory failure. Though pulmonary fibrosis can be caused by a variety of underlying etiologies, ranging from genetic defects to autoimmune diseases to environmental exposures, once fibrosis develops it is irreversible and most often progressive, such that fibrosis of the lung is one of the leading indications for lung transplantation. This review aims to provide a concise summary of the recent advances in our understanding of the genetics and genomics of pulmonary fibrosis, idiopathic pulmonary fibrosis in particular, and how these recent discoveries may be changing the clinical approach to diagnosing and treating patients with fibrotic interstitial lung disease.


Subject(s)
Idiopathic Pulmonary Fibrosis/therapy , Translational Research, Biomedical , Early Diagnosis , Genetic Predisposition to Disease , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/etiology , Idiopathic Pulmonary Fibrosis/genetics , Phenotype , Telomere/metabolism
13.
Radiographics ; 38(4): 1027-1045, 2018.
Article in English | MEDLINE | ID: mdl-29906203

ABSTRACT

Chest radiographs are obtained as a standard part of clinical care. Rapid advancements in medical technology have resulted in a myriad of new medical devices, and familiarity with their imaging appearance is a critical yet increasingly difficult endeavor. Many modern thoracic medical devices are new renditions of old designs and are often smaller than older versions. In addition, multiple device designs serving the same purpose may have varying morphologies and positions within the chest. The radiologist must be able to recognize and correctly identify the proper positioning of state-of-the-art medical devices and identify any potential complications that could impact patient care and management. To familiarize radiologists with the arsenal of newer thoracic medical devices, this review describes the indications, radiologic appearance, complications, and magnetic resonance imaging safety of each device. ©RSNA, 2018.


Subject(s)
Foreign Bodies/diagnostic imaging , Magnetic Resonance Imaging , Prostheses and Implants , Radiography, Thoracic/methods , Thorax/diagnostic imaging , Equipment Design , Equipment Safety , Humans
14.
Am J Physiol Lung Cell Mol Physiol ; 315(1): L1-L10, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29565179

ABSTRACT

The common gain-of-function MUC5B promoter variant ( rs35705950 ) is the strongest risk factor for the development of idiopathic pulmonary fibrosis (IPF). While the role of complement in IPF is controversial, both MUC5B and the complement system play a role in lung host defense. The aim of this study was to evaluate the relationship between complement component 3 (C3) and MUC5B in patients with IPF and in bleomycin-induced lung injury in mice. To do this, we evaluated C3 gene expression in whole lung tissue from 300 subjects with IPF and 175 healthy controls. Expression of C3 was higher in IPF than healthy controls {1.40-fold increase [95% confidence interval (CI) 1.31-1.50]; P < 0.0001} and even greater among IPF subjects with the highest-risk IPF MUC5B promoter genotype [TT vs. GG = 1.59-fold (95% CI 1.15-2.20); P < 0.05; TT vs. GT = 1.66-fold (95% CI 1.20-2.30); P < 0.05]. Among subjects with IPF, C3 expression was significantly higher in the lung tissue without microscopic honeycombing than in the lung tissue with microscopic honeycombing [1.40-fold increase (95% CI 1.23- 1.59); P < 0.01]. In mice, while bleomycin exposure increased Muc5b protein expression, C3-deficient mice were protected from bleomycin-induced lung injury. In aggregate, our findings indicate that the MUC5B promoter variant is associated with higher C3 expression and suggest that the complement system may contribute to the pathogenesis of IPF.


Subject(s)
Bleomycin/adverse effects , Complement C3/biosynthesis , Genetic Variation , Genotype , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Mucin-5B/biosynthesis , A549 Cells , Animals , Bleomycin/pharmacology , Complement C3/genetics , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Mice , Mice, Knockout , Middle Aged , Mucin-5B/genetics , Promoter Regions, Genetic
15.
Front Med (Lausanne) ; 4: 154, 2017.
Article in English | MEDLINE | ID: mdl-28993806

ABSTRACT

Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia (IIP), is characterized by irreversible scarring of the lung parenchyma and progressive decline in lung function leading to eventual respiratory failure. The prognosis of IPF is poor with a median survival of 3-5 years after diagnosis and no curative medical therapies. Although the pathogenesis of IPF is not well understood, there is a growing body of evidence that genetic factors contribute to disease risk. Recent studies have identified common and rare genetic variants associated with both sporadic and familial forms of pulmonary fibrosis, with at least one-third of the risk for developing fibrotic IIP explained by common genetic variants. The IPF-associated genetic loci discovered to date are implicated in diverse biological processes, including alveolar stability, host defense, cell-cell barrier function, and cell senescence. In addition, some common variants have also been associated with distinct clinical phenotypes. Better understanding of how genetic variation plays a role in disease risk and phenotype could identify potential therapeutic targets and inform clinical decision-making. In addition, clinical studies should be designed controlling for the genetic backgrounds of subjects, since clinical outcomes and therapeutic responses may differ by genotype. Further understanding of these differences will allow the development of personalized approaches to the IPF management.

16.
Ann Am Thorac Soc ; 14(5): 628-635, 2017 May.
Article in English | MEDLINE | ID: mdl-28248552

ABSTRACT

RATIONALE: The receptor for advanced glycation end products (RAGE) is underexpressed in idiopathic pulmonary fibrosis (IPF) lung, but the role of RAGE in human lung fibrosis remains uncertain. OBJECTIVES: To examine (1) the association between IPF risk and variation at rs2070600, a functional missense variant in AGER (the gene that codes for RAGE), and (2) the associations between plasma-soluble RAGE (sRAGE) levels with disease severity and time to death or lung transplant in IPF. METHODS: We genotyped the rs2070600 single-nucleotide polymorphism in 108 adults with IPF and 324 race-/ethnicity-matched control subjects. We measured plasma sRAGE by ELISA in 103 adults with IPF. We used generalized linear and additive models as well as Cox models to control for potential confounders. We repeated our analyses in 168 (genetic analyses) and 177 (sRAGE analyses) adults with other forms of interstitial lung disease (ILD). RESULTS: There was no association between rs2070600 variation among adults with IPF (P = 0.31). Plasma sRAGE levels were lower among adults with IPF and other forms of ILD than in control subjects (P < 0.001). The rs2070600 allele A was associated with a 49% lower sRAGE level (95% confidence interval [CI], 11 to 71%; P = 0.02) among adults with IPF. In adjusted analyses, lower sRAGE levels were associated with greater disease severity (14% sRAGE decrement per 10% FVC decrement; 95% CI, 5 to 22%) and a higher rate of death or lung transplant at 1 year (adjusted hazard ratio, 1.9 per logarithmic unit of sRAGE decrement; 95% CI, 1.2-3.3) in IPF. Similar findings were observed in a heterogeneous group of adults with other forms of ILD. CONCLUSIONS: Lower plasma sRAGE levels may be a biological measure of disease severity in IPF. Variation at the rs2070600 single-nucleotide polymorphism was not associated with IPF risk.


Subject(s)
Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/genetics , Receptor for Advanced Glycation End Products/blood , Receptor for Advanced Glycation End Products/genetics , Aged , Aged, 80 and over , Case-Control Studies , Disease Progression , Female , Genotype , Humans , Idiopathic Pulmonary Fibrosis/surgery , Lung Transplantation , Male , Middle Aged , Polymorphism, Single Nucleotide , Proportional Hazards Models , Prospective Studies , Solubility , United States
18.
Thorax ; 71(12): 1154-1160, 2016 12.
Article in English | MEDLINE | ID: mdl-27799632

ABSTRACT

Both common and rare variants contribute to the genetic architecture of pulmonary fibrosis. Genome-wide association studies have identified common variants, or those with a minor allele frequency of >5%, that are linked to pulmonary fibrosis. The most widely replicated variant (rs35705950) is located in the promoter region of the MUC5B gene and has been strongly associated with idiopathic pulmonary fibrosis (IPF) and familial interstitial pneumonia (FIP) across multiple different cohorts. However, many more common variants have been identified with disease risk and in aggregate account for approximately one-third of the risk of IPF. Moreover, several of these common variants appear to have prognostic potential. Next generation sequencing technologies have facilitated the identification of rare variants. Recent whole exome sequencing studies have linked pathogenic rare variants in multiple new genes to FIP. Compared with common variants, rare variants have lower population allele frequencies and higher effect sizes. Pulmonary fibrosis rare variants genes can be subdivided into two pathways: telomere maintenance and surfactant metabolism. Heterozygous rare variants in telomere-related genes co-segregate with adult-onset pulmonary fibrosis with incomplete penetrance, lead to reduced protein function, and are associated with short telomere lengths. Despite poor genotype-phenotype correlations, lung fibrosis associated with pathogenic rare variants in different telomere genes is progressive and displays similar survival characteristics. In contrast, many of the heterozygous rare variants in the surfactant genes predict a gain of toxic function from protein misfolding and increased endoplasmic reticulum (ER) stress. Evidence of both telomere shortening and increased ER stress have been found in sporadic IPF patients, suggesting that the mechanisms identified from rare variant genetic studies in unique individuals and families are applicable to a wider spectrum of patients. The ability to sequence large cohorts of individuals rapidly has the potential to further our understanding of the relative contributions of common and rare variants in the pathogenesis of pulmonary fibrosis. The UK 100,000 Genomes Project will provide opportunities to interrogate both common and rare variants and to investigate how these biological signals provide diagnostic and prognostic information in the era of stratified medicine.


Subject(s)
Pulmonary Fibrosis/genetics , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , Lung Diseases, Interstitial/genetics , Mucin-5B/genetics , Polymorphism, Single Nucleotide , Precision Medicine/methods , Pulmonary Surfactants/metabolism , Telomere Homeostasis/genetics
19.
Am J Respir Crit Care Med ; 193(10): 1151-60, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26669357

ABSTRACT

RATIONALE: Sequence variation, methylation differences, and transcriptional changes in desmoplakin (DSP) have been observed in patients with idiopathic pulmonary fibrosis (IPF). OBJECTIVES: To identify novel variants in DSP associated with IPF and to characterize the relationship of these IPF sequence variants with DSP gene expression in human lung. METHODS: A chromosome 6 locus (7,370,061-7,606,946) was sequenced in 230 subjects with IPF and 228 control subjects. Validation genotyping of disease-associated variants was conducted in 936 subjects with IPF and 936 control subjects. DSP gene expression was measured in lung tissue from 334 subjects with IPF and 201 control subjects. MEASUREMENTS AND MAIN RESULTS: We identified 23 sequence variants in the chromosome 6 locus associated with IPF. Genotyping of selected variants in our validation cohort revealed that noncoding intron 1 variant rs2744371 (odds ratio = 0.77, 95% confidence interval [CI] = 0.66-0.91, P = 0.002) is protective for IPF, and a previously described IPF-associated intron 5 variant (rs2076295) is associated with increased risk of IPF (odds ratio = 1.36, 95% CI = 1.19-1.56, P < 0.001) after controlling for sex and age. DSP expression is 2.3-fold increased (95% CI = 1.91-2.71) in IPF lung tissue (P < 0.0001). Only the minor allele at rs2076295 is associated with decreased DSP expression (P = 0.001). Staining of fibrotic and normal human lung tissue localized DSP to airway epithelia. CONCLUSIONS: Sequence variants in DSP are associated with IPF, and rs2076295 genotype is associated with differential expression of DSP in the lung. DSP expression is increased in IPF lung and concentrated in the airway epithelia, suggesting a potential role for DSP in the pathogenesis of IPF.


Subject(s)
Desmoplakins/genetics , Genetic Variation/genetics , Idiopathic Pulmonary Fibrosis/genetics , Aged , Female , Gene Expression/genetics , Humans , Male , Middle Aged , Odds Ratio
20.
BMC Med ; 13: 191, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26400796

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis, the most common form of idiopathic interstitial pneumonia, is characterized by progressive, irreversible scarring of the lung parenchyma. Idiopathic pulmonary fibrosis has a poor prognosis, and there are no medical therapies available that have been shown to improve survival. It is usually sporadic, but there is evidence of familial clustering of pulmonary fibrosis, suggesting a genetic basis for this disease. More recently, studies have confirmed that specific genetic variants are associated with both familial and sporadic forms of pulmonary fibrosis. DISCUSSION: Although there are common and rare genetic variants that have been associated with the risk of developing pulmonary fibrosis, the genotyping of patients is not a generally accepted strategy. Better understanding of the interplay between genetic risk and environmental exposure is likely needed to inform both treatment and disease prevention. Several identified disease-associated genetic variants have implications for disease progression and survival, but systematic studies of known genetic variants and their influence on therapeutic efficacy are lacking. Future investigations should focus on understanding phenotypic differences between patients carrying different risk alleles, and clinical studies should be designed to control for the influence of different genetic risk variants on patient outcomes. Inherited genetic factors play a significant role in the risk of developing pulmonary fibrosis. Future studies will be needed to characterize patient phenotypes and to understand how these genetic factors will influence clinical decision-making for both diagnosis and treatment of idiopathic pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis/genetics , Genome-Wide Association Study , Genotype , Humans , Idiopathic Pulmonary Fibrosis/therapy , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...