Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 18(2): e0011601, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377105

ABSTRACT

BACKGROUND: The sand flea, Tunga penetrans, is the cause of a severely neglected parasitic skin disease (tungiasis) in the tropics and has received little attention from entomologists to understand its transmission ecology. Like all fleas, T. penetrans has environmental off-host stages presenting a constant source of reinfection. We adapted the Berlese-Tullgren funnel method using heat from light bulbs to extract off-host stages from soil samples to identify the major development sites within rural households in Kenya and Uganda. METHODS AND FINDINGS: Simple, low-cost units of multiple funnels were designed to allow the extraction of >60 soil samples in parallel. We calibrated the method by investigating the impact of different bulb wattage and extraction time on resulting abundance and quality of off-host stages. A cross-sectional field survey was conducted in 49 tungiasis affected households. A total of 238 soil samples from indoor and outdoor living spaces were collected and extracted. Associations between environmental factors, household member infection status and the presence and abundance of off-host stages in the soil samples were explored using generalized models. The impact of heat (bulb wattage) and time (hours) on the efficiency of extraction was demonstrated and, through a stepwise approach, standard operating conditions defined that consistently resulted in the recovery of 75% (95% CI 63-85%) of all present off-host stages from any given soil sample. To extract off-host stages alive, potentially for consecutive laboratory bioassays, a low wattage (15-25 W) and short extraction time (4 h) will be required. The odds of finding off-host stages in indoor samples were 3.7-fold higher than in outdoor samples (95% CI 1.8-7.7). For every one larva outdoors, four (95% CI 1.3-12.7) larvae were found indoors. We collected 67% of all off-host specimen from indoor sleeping locations and the presence of off-host stages in these locations was strongly associated with an infected person sleeping in the room (OR 10.5 95% CI 3.6-28.4). CONCLUSION: The indoor sleeping areas are the transmission hotspots for tungiasis in rural homes in Kenya and Uganda and can be targeted for disease control and prevention measures. The soil extraction methods can be used as a simple tool for monitoring direct impact of such interventions.


Subject(s)
Flea Infestations , Skin Diseases, Parasitic , Tungiasis , Humans , Animals , Tunga , Tungiasis/epidemiology , Cross-Sectional Studies , Larva
2.
J Med Entomol ; 61(1): 261-265, 2024 01 12.
Article in English | MEDLINE | ID: mdl-37861430

ABSTRACT

Female sand fleas (Tunga penetrans Linnaeus, 1758, Siphonaptera: Tungidae) cause a severe parasitic skin disease known as tungiasis. T. penetrans is a small flea, measuring less than 1 mm in length. The females of this species burrow into the skin of human and animal hosts and mostly affect the feet. This has led to the anecdotal assumption that T. penetrans, unlike its relatives in the Siphonaptera family, would have a limited jumping ability potentially not reaching higher body parts. However, there is no data supporting this. This study evaluated the jumping capabilities of T. penetrans for height and distance using sticky tapes. The vertical jump of the female T. penetrans ranged from 4.5 to 100 mm with a mean of 40 mm whereas the vertical jump of the male T. penetrans ranged from 1.2 to 138 mm with a mean of 46 mm. The horizontal jump of the female T. penetrans ranged from 18 to 138 mm with a mean of 64 mm and that of the male ranged from 9 to 251 mm with a mean of 80 mm. Based on the literature, fleas of various species have been described as jumping vertically 50-100 times their size and horizontally 5-100 times their size. In this respect, sand fleas appear to have equal expert jumping abilities to their relatives. Their aggregation on people's feet is not likely a result of their poor jumping ability but might be an adaptation to the host's behavior which would require further investigations.


Subject(s)
Siphonaptera , Tungiasis , Humans , Male , Animals , Female , Tunga , Tungiasis/parasitology , Foot
3.
BMC Public Health ; 23(1): 2483, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38087242

ABSTRACT

CONTEXT: Tungiasis is a neglected tropical skin disease endemic in resource-poor communities. It is caused by the penetration of the female sand flea, Tunga penetrans, into the skin causing immense pain, itching, difficulty walking, sleeping and concentrating on school or work. Infection is associated with living in a house with unsealed earthen house floors. METHODS: This feasibility study used a community-based co-creation approach to develop and test simple, locally appropriate, and affordable flooring solutions to create a sealed, washable floor for the prevention of tungiasis. Locally used techniques were explored and compared in small slab trials. The floor with best strength and lowest cost was pilot trialed in 12 households with tungiasis cases to assess its durability and costs, feasibility of installation in existing local houses using local masons and explore community perceptions. Disease outcomes were measured to estimate potential impact. RESULTS: It was feasible to build the capacity of a community-based organization to conduct research, develop a low-cost floor and conduct a pilot trial. The optimal low-cost floor was stabilized local subsoil with cement at a 1:9 ratio, installed as a 5 cm depth slab. A sealed floor was associated with a lower mean infection intensity among infected children than in control households (aIRR 0.53, 95%CI 0.29-0.97) when adjusted for covariates. The cost of the new floor was US$3/m2 compared to $10 for a concrete floor. Beneficiaries reported the floor made their lives much easier, enabled them to keep clean and children to do their schoolwork and eat while sitting on the floor. Challenges encountered indicate future studies would need intensive mentoring of masons to ensure the floor is properly installed and households supervised to ensure the floor is properly cured. CONCLUSION: This study provided promising evidence that retrofitting simple cement-stabilised soil floors with locally available materials is a feasible option for tungiasis control and can be implemented through training of community-based organisations. Disease outcome data is promising and suggests that a definitive trial is warranted. Data generated will inform the design of a fully powered randomized trial combined with behaviour change communications. TRIAL REGISTRATION: ISRCTN 62801024 (retrospective 07.07.2023).


Subject(s)
Tungiasis , Animals , Child , Humans , Female , Tungiasis/prevention & control , Tungiasis/epidemiology , Feasibility Studies , Kenya/epidemiology , Retrospective Studies , Tunga , Pain
4.
Infect Dis Poverty ; 12(1): 100, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964353

ABSTRACT

BACKGROUND: Tungiasis, a neglected tropical parasitosis, disproportionately affects children. Few empirical studies have reported neurocognitive and mental health outcomes of children with ectoparasitic skin diseases like tungiasis. Pathophysiology of tungiasis suggests it could detrimentally affect cognition and behaviour. This study pioneered the investigation of neurocognitive and mental health outcomes in children with tungiasis. METHODS: This was a multi-site cross-sectional study including 454 quasi-randomly sampled school-children aged 8-14 from 48 randomly selected schools in two counties in Kenya and a district in Uganda. The participants were stratified into infected and uninfected based on the presence of tungiasis. The infected were further classified into mild and severe infection groups based on the intensity of the infection. Adapted, validated, and standardized measures of cognition and mental health such as Raven Matrices and Child Behaviour Checklist were used to collect data. Statistical tests including a multilevel, generalized mixed-effects linear models with family link set to identity were used to compare the scores of uninfected and infected children and to identify other potential risk factors for neurocognitive and behavioural outcomes. RESULTS: When adjusted for covariates, mild infection was associated with lower scores in literacy [adjusted ß(aß) = - 8.9; 95% confidence interval (CI) - 17.2, - 0.6], language (aß = - 1.7; 95% CI - 3.2, - 0.3), cognitive flexibility (aß = - 6.1; 95% CI - 10.4, - 1.7) and working memory (aß = - 0.3; 95% CI - 0.6, - 0.1). Severe infection was associated with lower scores in literacy (aß = - 11.0; 95% CI - 19.3, - 2.8), response inhibition, (aß = - 2.2; 95% CI - 4.2, - 0.2), fine motor control (aß = - 0.7; 95% CI - 1.1, - 0.4) and numeracy (aß = - 3; 95% CI - 5.5, - 0.4). CONCLUSIONS: This study provides first evidence that tungiasis is associated with poor neurocognitive functioning in children. Since tungiasis is a chronic disease with frequent reinfections, such negative effects may potentially impair their development and life achievements.


Subject(s)
Tungiasis , Animals , Humans , Child , Tungiasis/epidemiology , Cross-Sectional Studies , Uganda/epidemiology , Kenya/epidemiology , Tunga/physiology , Outcome Assessment, Health Care
5.
Infect Dis Poverty ; 12(1): 24, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36941724

ABSTRACT

BACKGROUND: Tungiasis is a neglected tropical skin disease caused by the sand flea Tunga penetrans. Female fleas penetrate the skin, particularly at the feet, and cause severe inflammation. This study aimed to characterize disease burden in two highly affected regions in Kenya, to test the use of thermography to detect tungiasis-associated inflammation and to create a new two-level classification of disease severity suitable for mapping, targeting, and monitoring interventions. METHODS: From February 2020 to April 2021, 3532 pupils age 8-14 years were quasi-randomly selected in 35 public primary schools and examined for tungiasis and associated symptoms. Of the infected pupils, 266 were quasi-randomly selected and their households visited, where an additional 1138 family members were examined. Inflammation was assessed using infra-red thermography. A Clinical score was created combining the number of locations on the feet with acute and chronic symptoms and infra-red hotspots. RESULTS: The overall prevalence of tungiasis among all the school pupils who were randomly selected during survey rounds 1 and 3 was 9.3% [95% confidence interval (CI): 8.4-10.3]. Based on mixed effects logistic models, the odds of infection with tungiasis among school pupils was three times higher in Kwale (coastal Kenya) than in Siaya [western Kenya; adjusted odds ratio (aOR) = 0.36, 95% CI: 0.18-0.74]; three times higher in males than in females (aOR = 3.0, 95% CI: 2.32-3.91) and three times lower among pupils sleeping in a house with a concrete floor (aOR = 0.32, 95% CI: 0.24-0.44). The odds of finding an infected person among the household population during surveys before the COVID-19 pandemic was a third (aOR = 0.32, 95% CI: 0.19-0.53) of that when schools were closed due to COVID-19 restrictions and approximately half (aOR = 0.44, 95% CI: 0.29-0.68) in surveys done after school re-opening (round 3). Infection intensity was positively correlated with inflammation as measured by thermography (Spearman's rho = 0.68, P < 0.001) and with the clinical score (rho = 0.86, P < 0.001). Based on the two-level classification, severe cases were associated with a threefold higher level of pain (OR = 2.99, 95% CI: 2.02-4.43) and itching (OR = 3.31, 95% CI: 2.24-4.89) than mild cases. CONCLUSIONS: Thermography was a valuable addition for assessing morbidity and the proposed two-level classification of disease severity clearly separated patients with mild and severe impacts. The burden of tungiasis was considerably higher in households surveyed during COVID-19 restrictions suggesting underlying risks are found in the home environment more than in school.


Subject(s)
COVID-19 , Tungiasis , Male , Animals , Humans , Female , Child , Adolescent , Tungiasis/diagnosis , Tungiasis/epidemiology , Kenya/epidemiology , Thermography , Pandemics , COVID-19/diagnosis , COVID-19/epidemiology , Prevalence , Cost of Illness , Tunga , Inflammation/epidemiology , Schools
6.
Insects ; 14(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36661934

ABSTRACT

Tungiasis is a neglected tropical disease caused by skin-penetrating female Tunga penetrans fleas. Although tungiasis causes severe health problems, its ecology is poorly understood and morphological descriptions of the larvae are unavailable. To identify T. penetrans immature stages and sites where they develop, diagnostic PCRs are required. However, flea larvae feed on soil organic matter rich in PCR inhibitors. Here, three DNA preparation methods, including a soil DNA kit that removes inhibitors, a simple ammonium acetate precipitation approach (AmAcet) and a crude lysate of larvae (CL), were combined with amplification by the highly processive FIREPol® Taq or the inhibitor-resistant Phusion® polymerase. Independent of the polymerase used, the frequency of successful amplification, Cq values and PCR efficacies for the low-cost CL and AmAcet methods were superior to the commercial kit for amplification of a 278 bp partial internal transcribed spacer-2 (ITS-2) and a 730 bp pan-Siphonaptera cytochrome oxidase II PCR. For the CL method combined with Phusion® polymerase, the costs were approximately 20-fold lower than for the methods based on the soil DNA kit, which is a considerable advantage in resource-poor settings. The ITS-2 PCR did not amplify Ctenocephalides felis genomic or Tunga trimammilata ITS-2 plasmid DNA, meaning it can be used to specifically identify T. penetrans.

7.
Infect Genet Evol ; 69: 235-245, 2019 04.
Article in English | MEDLINE | ID: mdl-30735814

ABSTRACT

Erythrocyte surface proteins have been identified as receptors of Plasmodium falciparum merozoite proteins. The ligand-receptor interactions enable the parasite to invade human erythrocytes, initiating the clinical symptoms of malaria. These interactions are likely to have had an evolutionary impact on the genes that encode the ligand and receptor proteins. We used sequence data from Kilifi, Kenya to detect departures from neutrality in a paired analysis of P. falciparum merozoite ligands and their erythrocyte receptor genes from the same population. We genotyped parasite and human DNA obtained from 93 individuals with severe malaria. We examined six merozoite ligands EBA175, EBL1, EBA140, MSP1, Rh4 and Rh5, and their corresponding erythrocyte receptors, glycophorin (Gyp) A, GypB, GypC, band 3, complement receptor (CR) 1 and basigin, focusing on the regions involved in the ligand-receptor interactions. Positive Tajima's D values (>1) were observed only in the MSP1 C-terminal region and EBA175 region II, while negative values (<-1) were observed in EBL-1 region II, Rh4, basigin exons 3 and 5, CR1 exon 5, Gyp B exons 2, 3 and 4 and Gyp C exon 2. Additionally, ebl-1 region II and basigin exon 3 showed extreme negative values in all three tests, Tajima's D, Fu & Li D* and F*, ≤ - 2. A large majority of the erythrocyte receptor and merozoite genes have a negative Tajima's D even when compared with previously published whole genome data. Thus, highlighting EBA175 region II and MSP1-33, as outlier genes with a positive Tajima's D (>1). Both these genes contain multiple polymorphisms, which in the case of EBA175 may counteract receptor polymorphisms and/or evade host immune responses and in MSP1 the polymorphisms may primarily evade host immune responses.


Subject(s)
Erythrocytes/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Merozoites/metabolism , Plasmodium falciparum/physiology , Receptors, Cell Surface/metabolism , Alleles , Child , Child, Preschool , Female , Gene Frequency , Host-Parasite Interactions , Humans , Infant , Infant, Newborn , Ligands , Malaria, Falciparum/genetics , Male , Models, Molecular , Plasmodium falciparum/classification , Polymorphism, Genetic , Protein Conformation , Protozoan Proteins/genetics , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL