Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(13): 1758-1761, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38251830

ABSTRACT

Herein, we report the first example of chiral donor-acceptor cage DA-2 displaying efficient circularly polarized thermally activated delayed fluorescence (CP-TADF) with |glum| values up to 2.1 × 10-3 and PLQY of 32%. A small ΔEST of 0.051 eV and quasi-parallel (θ = 6°) transition electric and magnetic dipole moments were realized from the through-space charge transfer interaction between the parallelly aligned donor and acceptor in DA-2. This D-A cage configuration has provided a novel design strategy for discovering potential efficient CP-TADF emitters.

2.
Molecules ; 28(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903284

ABSTRACT

We show that through the introduction of short dimethylsiloxane chains, it was possible to suppress the crystalline state of CBP in favor of various types of organization, transitioning from a soft crystal to a fluid liquid crystal mesophase, then to a liquid state. Characterized by X-ray scattering, all organizations reveal a similar layered configuration in which layers of edge-on lying CBP cores alternate with siloxane. The difference between all CBP organizations essentially lay on the regularity of the molecular packing that modulates the interactions of neighboring conjugated cores. As a result, the materials show quite different thin film absorption and emission properties, which could be correlated to the features of the chemical architectures and the molecular organizations.

3.
Materials (Basel) ; 15(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36431477

ABSTRACT

Donor−acceptor (D−A) small molecules are regarded as promising hole-transporting materials for perovskite solar cells (PSCs) due to their tunable optoelectronic properties. This paper reports the design, synthesis and characterization of three novel isomeric D-π-A small molecules PY1, PY2 and PY3. The chemical structures of the molecules consist of a pyrazolo[1,5-a]pyrimidine acceptor core functionalized with one 3,6-bis(4,4'-dimethoxydiphenylamino)carbazole (3,6-CzDMPA) donor moiety via a phenyl π-spacer at the 3, 5 and 7 positions, respectively. The isolated compounds possess suitable energy levels, sufficient thermal stability (Td > 400 °C), molecular glass behavior with Tg values in the range of 127−136 °C slightly higher than that of the reference material Spiro-OMeTAD (126 °C) and acceptable hydrophobicity. Undoped PY1 demonstrates the highest hole mobility (3 × 10−6 cm2 V−1 s−1) compared to PY2 and PY3 (1.3 × 10−6 cm2 V−1 s−1). The whole isomers were incorporated as doped HTMs in planar n-i-p PSCs based on double cation perovskite FA0.85Cs0.15Pb(I0.85Br0.15)3. The non-optimized device fabricated using PY1 exhibited a power conversion efficiency (PCE) of 12.41%, similar to that obtained using the reference, Spiro-OMeTAD, which demonstrated a maximum PCE of 12.58% under the same conditions. The PY2 and PY3 materials demonstrated slightly lower performance in device configuration, with relatively moderate PCEs of 10.21% and 10.82%, respectively, and slight hysteresis behavior (−0.01 and 0.02). The preliminary stability testing of PSCs is also described. The PY1-based device exhibited better stability than the device using Spiro-OMeTAD, which could be related to its slightly superior hydrophobic character preventing water diffusion into the perovskite layer.

4.
Nat Commun ; 12(1): 6519, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34764252

ABSTRACT

Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s-1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.

5.
Angew Chem Int Ed Engl ; 60(15): 8419-8424, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33448550

ABSTRACT

The synthesis of the first mesogenic donor-acceptor polyoxometalate (POM)-based hybrid is herein described. The structural and electronic properties of the hybrid compound were evaluated through combination of small- and wide-angle X-ray scattering, optical microscopy, electrochemistry and photoluminescence. In the solid state, the compound behaves as a birefringent solid, displaying a lamellar organization in which double-layers of POMs and bis(thiophene)thienothiophene organic donors alternate regularly. Noticeably, the sub-unit organizations in the composite are similar to that observed for the individual POM and organic donor precursors. Photophysical studies show that in the hybrid, the fluorescence of the organic donor unit is considerably quenched both in solution and in the solid state, which is attributed to occurrence of intramolecular charge-separated state.

6.
RSC Adv ; 11(60): 38247-38257, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-35498060

ABSTRACT

Epsilon-near-zero (ENZ) properties have been reported in organic molecular films. In particular, cyanine and squaraine films have been shown to exhibit ENZ properties in the visible spectral region with a strong 3rd order nonlinear optical response near the ENZ spectral region. Noting both cyanine and squaraine belong to the polymethine family, a series of six curcuminoid borondifluoride (Curc) derivatives were developed to examine whether such a polymethine character is positively correlated with the ENZ property of the organic films. Those Curc derivatives possess a Donor-Acceptor-Donor (D-A-D) architecture with acceptor, AcacBF2, located at the molecular center. The backbone of Curc is designed such that the donor strength can be tuned to transit between charge transfer (CT) and polymethine character. This balance between CT and polymethine character of the Curc series is examined based on the Lippert-Mataga plot. As donor strength in the D-A-D structure increases, CT character is less marked resulting in a more dominant polymethine character. The structural and optical properties of the Curc films with a thickness in the order of 30 nm were examined to correlate the polymethine character with the ENZ response. The results obtained in isotropic Curc thin films demonstrate that an increase of polymethine character associated with a stronger donor strength leads to an appearance/enhancement of the ENZ property in the visible spectrum range from 500 to 670 nm. Overall, this study provides useful guidelines to engineer new organic materials showing ENZ properties in a desired spectral range.

7.
J Appl Crystallogr ; 52(Pt 3): 618-625, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31236093

ABSTRACT

Detailed crystallographic information provided by X-ray diffraction (XRD) is complementary to molecular information provided by Raman spectroscopy. Accordingly, the combined use of these techniques allows the identification of an unknown compound without ambiguity. However, a full combination of Raman and XRD results requires an appropriate and reliable reference database with complete information. This is already available for XRD. The main objective of this paper is to introduce and describe the recently developed Raman Open Database (ROD, http://solsa.crystallography.net/rod). It comprises a collection of high-quality uncorrected Raman spectra. The novelty of this database is its interconnectedness with other open databases like the Crystallography Open Database (http://www.crystallography.net/cod and Theoretical Crystallography Open Database (http://www.crystallography.net/tcod/). The syntax adopted to format entries in the ROD is based on the worldwide recognized and used CIF format, which offers a simple way for data exchange, writing and description. ROD also uses JCAMP-DX files as an alternative format for submitted spectra. JCAMP-DX files are compatible to varying degrees with most commercial Raman software and can be read and edited using standard text editors.

8.
Chem Asian J ; 14(11): 1921-1925, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-30912261

ABSTRACT

Thermally activated delayed fluorescence (TADF) based on through-space donor and acceptor interactions constitute a recent and promising approach to develop efficient TADF emitters. Novel TADF isomers using a dithia[3.3]-paracyclophane building block as a versatile 3D platform to promote through-space interactions are presented. Such a 3D platform allows to bring together the D and A units into close proximity and to probe the effect of their orientation, contact site and distance on their TADF emission properties. This study provides evidence that the dithia[3.3]paracyclophane core is a promising platform to control intramolecular through-space interactions and obtain an efficient TADF emission with short reverse-intersystem crossing (RISC) lifetimes. In addition, this study demonstrates that this design can tune the energy levels of the triplet states and leads to an upconversion from 3 CT to 3 LE that promotes faster and more efficient RISC to the 1 CT singlet state.

9.
ACS Omega ; 3(2): 2254-2260, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-31458527

ABSTRACT

A new thermally activated delayed fluorescent molecule, TRZ 3(Ph-PTZ), containing three phenothiazines as donor units and a 2,4,6-triphenyl-1,3,5-triazine as the acceptor unit was synthesized using a simple cost-effective method based on a cobalt catalyzed cross-coupling. This compound was tested in organic light-emitting diodes and was found to show superior yellowish-green electroluminescence performance with a maximum external quantum efficiency of 17.4% and a maximum luminance value of 7430 cd/m2.

10.
Langmuir ; 33(44): 12759-12765, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29028348

ABSTRACT

We propose a novel approach to trap 2 nm Pt nanocrystals using nanoporous two-dimensional supramolecular networks for cavity-confined host-guest recognition process. This will be achieved by taking advantage of two features of supramolecular self-assembly at surfaces: First, its capability to allow the formation of complex 2D architectures, more particularly, nanoporous networks, through noncovalent interactions between organic molecular building-blocks; second, the ability of the nanopores to selectively host and immobilize a large variety of guest species. In this paper, for the first time, we will use isotropic honeycomb networks and anisotropic linear porous supramolecular networks to host 2 nm Pt nanocrystals.

11.
Nat Mater ; 16(7): 722-729, 2017 07.
Article in English | MEDLINE | ID: mdl-28581481

ABSTRACT

Charge transfer (CT) is a fundamental and ubiquitous mechanism in biology, physics and chemistry. Here, we evidence that CT dynamics can be altered by multi-layered hyperbolic metamaterial (HMM) substrates. Taking triphenylene:perylene diimide dyad supramolecular self-assemblies as a model system, we reveal longer-lived CT states in the presence of HMM structures, with both charge separation and recombination characteristic times increased by factors of 2.4 and 1.7-that is, relative variations of 140 and 73%, respectively. To rationalize these experimental results in terms of driving force, we successfully introduce image dipole interactions in Marcus theory. The non-local effect herein demonstrated is directly linked to the number of metal-dielectric pairs, can be formalized in the dielectric permittivity, and is presented as a solid analogue to local solvent polarity effects. This model and extra PH3T:PC60BM results show the generality of this non-local phenomenon and that a wide range of kinetic tailoring opportunities can arise from substrate engineering. This work paves the way toward the design of artificial substrates to control CT dynamics of interest for applications in optoelectronics and chemistry.

12.
Nano Lett ; 16(10): 6480-6484, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27652517

ABSTRACT

Single-molecule junctions specifically designed for their optical properties are operated as light-emitting devices using a cryogenic scanning tunneling microscope. They are composed of an emitting unit-a molecular chromophore-suspended between a Au(111) surface and the tip of the microscope by organic linkers. Tunneling electrons flowing through these junctions generate a narrow-line emission of light whose color is controlled by carefully selecting the chemical structure of the emitting unit. Besides the main emission line, red and blue-shifted vibronic features of low intensity are also detected. While the red-shifted features provide a spectroscopic fingerprint of the emitting unit, the blue-shifted ones are interpreted in terms of hot luminescence from vibrationally excited states of the molecule.

13.
Phys Rev Lett ; 116(3): 036802, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26849607

ABSTRACT

A molecular wire containing an emitting molecular center is controllably suspended between the plasmonic electrodes of a cryogenic scanning tunneling microscope. Passing current through this circuit generates an ultranarrow-line emission at an energy of ≈1.5 eV which is assigned to the fluorescence of the molecular center. Control over the linewidth is obtained by progressively detaching the emitting unit from the surface. The recorded spectra also reveal several vibronic peaks of low intensities that can be viewed as a fingerprint of the emitter. Surface plasmons localized at the tip-sample interface are shown to play a major role in both excitation and emission of the molecular excitons.

14.
Chemphyschem ; 16(18): 3774-8, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26488211

ABSTRACT

2D supramolecular self-assembly is a good way to form well-defined nanostructures on various substrates. One of the current challenges is to extend this approach to 3D functional building blocks. Here, we address this issue by providing a strategy for the controlled lifting and positioning of functional units above a graphitic substrate. This is the first time that multistory cyclophane-based 3D tectons incorporating C60 units have been designed and synthesized. Molecular modelling provides a description of the 3D geometries and evidences the flexible character of the building blocks. Despite this later feature, the supramolecular self-assembly of Janus tectons on HOPG yields well-ordered adlayers incorporating C60 arrays at well-defined mean distances from the surface. As our approach is not limited to C60 , the results reported here open-up possibilities for applications where the topological and electronic interactions between the substrate and the functional unit are of prime importance.

15.
J Phys Chem Lett ; 6(15): 2987-92, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26267192

ABSTRACT

A scanning tunnelling microscope is used to pull a polythiophene wire from a Au(111) surface while measuring the current traversing the junction. Abrupt current increases measured during the lifting procedure are associated with the detachment of molecular subunits, in apparent contradiction with the expected exponential decrease of the conductance with wire length. Ab initio simulations reproduce the experimental data and demonstrate that this unexpected behavior is due to release of mechanical stress in the wire, paving the way to mechanically gated single-molecule electronic devices.

16.
Beilstein J Nanotechnol ; 6: 632-9, 2015.
Article in English | MEDLINE | ID: mdl-25821703

ABSTRACT

Two-dimensional (2D), supramolecular self-assembly at surfaces is now well-mastered with several existing examples. However, one remaining challenge to enable future applications in nanoscience is to provide potential functionalities to the physisorbed adlayer. This work reviews a recently developed strategy that addresses this key issue by taking advantage of a new concept, Janus tecton materials. This is a versatile, molecular platform based on the design of three-dimensional (3D) building blocks consisting of two faces linked by a cyclophane-type pillar. One face is designed to steer 2D self-assembly onto C(sp(2))-carbon-based flat surfaces, the other allowing for the desired functionality above the substrate with a well-controlled lateral order. In this way, it is possible to simultaneously obtain a regular, non-covalent paving as well as supramolecular functionalization of graphene, thus opening interesting perspectives for nanoscience applications.

17.
Nanotechnology ; 25(43): 435604, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25297935

ABSTRACT

Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

18.
Langmuir ; 30(44): 13275-82, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25317696

ABSTRACT

We investigate the expression of chirality in a monolayer formed spontaneously by 2,3,6,7,10,11-pentyloxytriphenylene (H5T) on Au(111). We resolve its interface morphology by combining scanning tunneling microscopy (STM) with theoretical calculations of intermolecular and interfacial interaction potentials. We observe two commensurate structures. While both of them belong to a hexagonal space group, analogical to the triangular symmetry of the molecule and the hexagonal symmetry of the substrate surface, they surprisingly reveal a 2D chiral character. The corresponding breaking of symmetry arises for two reasons. First it is due to the establishment of a large molecular density on the substrate, which leads to a rotation of the molecules with respect to the molecular network crystallographic axes to avoid steric repulsion between neighboring alkoxy chains. Second it is due to the molecule-substrate interactions, leading to commensurable large crystallographic cells associated with the large size of the molecule. As a consequence, molecular networks disoriented with respect to the high symmetry directions of the substrate are induced. The high simplicity of the intermolecular and molecule-substrate van der Waals interactions leading to these observations suggests a generic character for this kind of symmetry breaking. We demonstrate that, for similar molecular densities, only two kinds of molecular networks are stabilized by the molecule-substrate interactions. The most stable network favors the interfacial interactions between terminal alkoxy tails and Au(111). The metastable one favors a specific orientation of the triphenylene core with its symmetry axes collinear to the Au⟨110⟩. This specific orientation of the triphenylene cores with respect to Au(111) appears associated with an energy advantage larger by at least 0.26 eV with respect to the disoriented core.

19.
Angew Chem Int Ed Engl ; 53(38): 10060-6, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25047257

ABSTRACT

A general strategy for simultaneously generating surface-based supramolecular architectures on flat sp(2) -hybridized carbon supports and independently exposing on demand off-plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D Janus tectons that form surface-confined supramolecular adlayers in which it is possible to simultaneously steer the 2D self-assembly on flat C(sp(2))-based substrates and tailor the external interface above the substrate by exposure to a wide variety of small terminal chemical groups and functional moieties. This approach is validated throughout by scanning tunneling microscopy (STM) at the liquid-solid interface and molecular mechanics modeling studies. The successful self-assembly on graphene, together with the possibility to transfer the graphene monolayer onto various substrates, should considerably extend the application of our functionalization strategy.

20.
Nat Commun ; 5: 3583, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24709956

ABSTRACT

High-performance non-volatile memory that can operate under various mechanical deformations such as bending and folding is in great demand for the future smart wearable and foldable electronics. Here we demonstrate non-volatile solution-processed ferroelectric organic field-effect transistor memories operating in p- and n-type dual mode, with excellent mechanical flexibility. Our devices contain a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) thin insulator layer and use a quinoidal oligothiophene derivative (QQT(CN)4) as organic semiconductor. Our dual-mode field-effect devices are highly reliable with data retention and endurance of >6,000 s and 100 cycles, respectively, even after 1,000 bending cycles at both extreme bending radii as low as 500 µm and with sharp folding involving inelastic deformation of the device. Nano-indentation and nano scratch studies are performed to characterize the mechanical properties of organic layers and understand the crucial role played by QQT(CN)4 on the mechanical flexibility of our devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...