Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Hum Mol Genet ; 32(12): 1988-2004, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36795052

ABSTRACT

SURF1 deficiency (OMIM # 220110) causes Leigh syndrome (LS, OMIM # 256000), a mitochondrial disorder typified by stress-induced metabolic strokes, neurodevelopmental regression and progressive multisystem dysfunction. Here, we describe two novel surf1-/- zebrafish knockout models generated by CRISPR/Cas9 technology. While gross larval morphology, fertility, and survival into adulthood appeared unaffected, surf1-/- mutants manifested adult-onset ocular anomalies and decreased swimming activity, as well as classical biochemical hallmarks of human SURF1 disease, including reduced complex IV expression and enzymatic activity and increased tissue lactate. surf1-/- larvae also demonstrated oxidative stress and stressor hypersensitivity to the complex IV inhibitor, azide, which exacerbated their complex IV deficiency, reduced supercomplex formation, and induced acute neurodegeneration typical of LS including brain death, impaired neuromuscular responses, reduced swimming activity, and absent heartrate. Remarkably, prophylactic treatment of surf1-/- larvae with either cysteamine bitartrate or N-acetylcysteine, but not other antioxidants, significantly improved animal resiliency to stressor-induced brain death, swimming and neuromuscular dysfunction, and loss of heartbeat. Mechanistic analyses demonstrated cysteamine bitartrate pretreatment did not improve complex IV deficiency, ATP deficiency, or increased tissue lactate but did reduce oxidative stress and restore glutathione balance in surf1-/- animals. Overall, two novel surf1-/- zebrafish models recapitulate the gross neurodegenerative and biochemical hallmarks of LS, including azide stressor hypersensitivity that was associated with glutathione deficiency and ameliorated by cysteamine bitartrate or N-acetylcysteine therapy.


Subject(s)
Cytochrome-c Oxidase Deficiency , Leigh Disease , Animals , Adult , Humans , Leigh Disease/drug therapy , Leigh Disease/genetics , Leigh Disease/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Acetylcysteine , Cysteamine/pharmacology , Azides/metabolism , Brain Death , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Glutathione/metabolism , Lactates
2.
JCI Insight ; 7(20)2022 10 24.
Article in English | MEDLINE | ID: mdl-36278487

ABSTRACT

Dihydrolipoamide dehydrogenase (DLD) deficiency is a recessive mitochondrial disorder caused by depletion of DLD from α-ketoacid dehydrogenase complexes. Caenorhabditis elegans animal models of DLD deficiency generated by graded feeding of dld-1(RNAi) revealed that full or partial reduction of DLD-1 expression recapitulated increased pyruvate levels typical of pyruvate dehydrogenase complex deficiency and significantly altered animal survival and health, with reductions in brood size, adult length, and neuromuscular function. DLD-1 deficiency dramatically increased mitochondrial unfolded protein stress response induction and adaptive mitochondrial proliferation. While ATP levels were reduced, respiratory chain enzyme activities and in vivo mitochondrial membrane potential were not significantly altered. DLD-1 depletion directly correlated with the induction of mitochondrial stress and impairment of worm growth and neuromuscular function. The safety and efficacy of dichloroacetate, thiamine, riboflavin, 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR), l-carnitine, and lipoic acid supplemental therapies empirically used for human DLD disease were objectively evaluated by life span and mitochondrial stress response studies. Only dichloroacetate and thiamine showed individual and synergistic therapeutic benefits. Collectively, these C. elegans dld-1(RNAi) animal model studies demonstrate the translational relevance of preclinical modeling of disease mechanisms and therapeutic candidates. Results suggest that clinical trials are warranted to evaluate the safety and efficacy of dichloroacetate and thiamine in human DLD disease.


Subject(s)
Thiamine , Thioctic Acid , Adult , Animals , Humans , Caenorhabditis elegans/metabolism , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Riboflavin , Carnitine , Pyruvates , Adenosine Triphosphate
3.
JCI Insight ; 7(16)2022 08 22.
Article in English | MEDLINE | ID: mdl-35881484

ABSTRACT

Pathogenic variants in the human F-box and leucine-rich repeat protein 4 (FBXL4) gene result in an autosomal recessive, multisystemic, mitochondrial disorder involving variable mitochondrial depletion and respiratory chain complex deficiencies with lactic acidemia. As no FDA-approved effective therapies for this disease exist, we sought to characterize translational C. elegans and zebrafish animal models, as well as human fibroblasts, to study FBXL4-/- disease mechanisms and identify preclinical therapeutic leads. Developmental delay, impaired fecundity and neurologic and/or muscular activity, mitochondrial dysfunction, and altered lactate metabolism were identified in fbxl-1(ok3741) C. elegans. Detailed studies of a PDHc activator, dichloroacetate (DCA), in fbxl-1(ok3741) C. elegans demonstrated its beneficial effects on fecundity, neuromotor activity, and mitochondrial function. Validation studies were performed in fbxl4sa12470 zebrafish larvae and in FBXL4-/- human fibroblasts; they showed DCA efficacy in preventing brain death, impairment of neurologic and/or muscular function, mitochondrial biochemical dysfunction, and stress-induced morphologic and ultrastructural mitochondrial defects. These data demonstrate that fbxl-1(ok3741) C. elegans and fbxl4sa12470 zebrafish provide robust translational models to study mechanisms and identify preclinical therapeutic candidates for FBXL4-/- disease. Furthermore, DCA is a lead therapeutic candidate with therapeutic benefit on diverse aspects of survival, neurologic and/or muscular function, and mitochondrial physiology that warrants rigorous clinical trial study in humans with FBXL4-/- disease.


Subject(s)
Dichloroacetic Acid , F-Box Proteins , Mitochondrial Diseases , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Humans , Mitochondria/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Ubiquitin-Protein Ligases/metabolism , Zebrafish
4.
CRISPR J ; 4(6): 799-821, 2021 12.
Article in English | MEDLINE | ID: mdl-34847747

ABSTRACT

Functional analyses of mitochondria have been hampered by few effective approaches to manipulate mitochondrial DNA (mtDNA) and a lack of existing animal models. Recently a TALE-derived base editor was shown to induce C-to-T (or G-to-A) sequence changes in mtDNA. We report here the FusX TALE Base Editor (FusXTBE) to facilitate broad-based access to TALE mitochondrial base editing technology. TALE Writer is a de novo in silico design tool to map potential mtDNA base editing sites. FusXTBE was demonstrated to function with comparable activity to the initial base editor in human cells in vitro. Zebrafish embryos were used as a pioneering in vivo test system, with FusXTBE inducing 90+% editing efficiency in mtDNA loci as an example of near-complete induction of mtDNA heteroplasmy in vivo. Gene editing specificity as precise as a single nucleotide was observed for a protein-coding gene. Nondestructive genotyping enables single-animal mtDNA analyses for downstream biological functional genomic applications. FusXTBE is a new gene editing toolkit for exploring important questions in mitochondrial biology and genetics.


Subject(s)
DNA, Mitochondrial , Zebrafish , Animals , CRISPR-Cas Systems , DNA, Mitochondrial/genetics , Gene Editing , Humans , Mitochondria/genetics , Zebrafish/genetics
5.
J Vis Exp ; (170)2021 04 04.
Article in English | MEDLINE | ID: mdl-33871460

ABSTRACT

Caenorhabditis elegans is widely recognized for its central utility as a translational animal model to efficiently interrogate mechanisms and therapies of diverse human diseases. Worms are particularly well-suited for high-throughput genetic and drug screens to gain deeper insight into therapeutic targets and therapies by exploiting their fast development cycle, large brood size, short lifespan, microscopic transparency, low maintenance costs, robust suite of genomic tools, mutant repositories, and experimental methodologies to interrogate both in vivo and ex vivo physiology. Worm locomotor activity represents a particularly relevant phenotype that is frequently impaired in mitochondrial disease, which is highly heterogeneous in causes and manifestations but collectively shares an impaired capacity to produce cellular energy. While a suite of different methodologies may be used to interrogate worm behavior, these vary greatly in experimental costs, complexity, and utility for genomic or drug high-throughput screens. Here, the relative throughput, advantages, and limitations of 16 different activity analysis methodologies were compared that quantify nematode locomotion, thrashing, pharyngeal pumping, and/or chemotaxis in single worms or worm populations of C. elegans at different stages, ages, and experimental durations. Detailed protocols were demonstrated for two semi-automated methods to quantify nematode locomotor activity that represent novel applications of available software tools, namely, ZebraLab (a medium-throughput approach) and WormScan (a high-throughput approach). Data from applying these methods demonstrated similar degrees of reduced animal activity occurred at the L4 larval stage, and progressed in day 1 adults, in mitochondrial complex I disease (gas-1(fc21)) mutant worms relative to wild-type (N2 Bristol) C. elegans. This data validates the utility for these novel applications of using the ZebraLab or WormScan software tools to quantify worm locomotor activity efficiently and objectively, with variable capacity to support high-throughput drug screening on worm behavior in preclinical animal models of mitochondrial disease.


Subject(s)
Behavior, Animal , Caenorhabditis elegans , Disease Models, Animal , High-Throughput Screening Assays/methods , Locomotion , Mitochondrial Diseases/physiopathology , Animals , Phenotype
6.
Hum Mol Genet ; 30(7): 536-551, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33640978

ABSTRACT

Mitochondrial respiratory chain disorders are empirically managed with variable antioxidant, cofactor and vitamin 'cocktails'. However, clinical trial validated and approved compounds, or doses, do not exist for any single or combinatorial mitochondrial disease therapy. Here, we sought to pre-clinically evaluate whether rationally designed mitochondrial medicine combinatorial regimens might synergistically improve survival, health and physiology in translational animal models of respiratory chain complex I disease. Having previously demonstrated that gas-1(fc21) complex I subunit ndufs2-/-C. elegans have short lifespan that can be significantly rescued with 17 different metabolic modifiers, signaling modifiers or antioxidants, here we evaluated 11 random combinations of these three treatment classes on gas-1(fc21) lifespan. Synergistic rescue occurred only with glucose, nicotinic acid and N-acetylcysteine (Glu + NA + NAC), yielding improved mitochondrial membrane potential that reflects integrated respiratory chain function, without exacerbating oxidative stress, and while reducing mitochondrial stress (UPRmt) and improving intermediary metabolic disruptions at the levels of the transcriptome, steady-state metabolites and intermediary metabolic flux. Equimolar Glu + NA + NAC dosing in a zebrafish vertebrate model of rotenone-based complex I inhibition synergistically rescued larval activity, brain death, lactate, ATP and glutathione levels. Overall, these data provide objective preclinical evidence in two evolutionary-divergent animal models of mitochondrial complex I disease to demonstrate that combinatorial Glu + NA + NAC therapy significantly improved animal resiliency, even in the face of stressors that cause severe metabolic deficiency, thereby preventing acute neurologic and biochemical decompensation. Clinical trials are warranted to evaluate the efficacy of this lead combinatorial therapy regimen to improve resiliency and health outcomes in human subjects with mitochondrial disease.


Subject(s)
Acetylcysteine/pharmacology , Disease Models, Animal , Electron Transport Complex I/metabolism , Glucose/pharmacology , Mitochondria/drug effects , Mitochondrial Diseases/prevention & control , Niacin/pharmacology , Animals , Caenorhabditis elegans , Drug Synergism , Electron Transport Complex I/genetics , Free Radical Scavengers/pharmacology , Humans , Longevity/drug effects , Longevity/genetics , Membrane Potential, Mitochondrial/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mutation , Oxidative Stress/drug effects , Zebrafish
7.
Hum Mol Genet ; 28(11): 1837-1852, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30668749

ABSTRACT

Cysteamine bitartrate is a US Food and Drug Administration-approved therapy for nephropathic cystinosis also postulated to enhance glutathione biosynthesis. We hypothesized this antioxidant effect may reduce oxidative stress in primary mitochondrial respiratory chain (RC) disease, improving cellular viability and organismal health. Here, we systematically evaluated the therapeutic potential of cysteamine bitartrate in RC disease models spanning three evolutionarily distinct species. These pre-clinical studies demonstrated the narrow therapeutic window of cysteamine bitartrate, with toxicity at millimolar levels directly correlating with marked induction of hydrogen peroxide production. Micromolar range cysteamine bitartrate treatment in Caenorhabditis elegans gas-1(fc21) RC complex I (NDUFS2-/-) disease invertebrate worms significantly improved mitochondrial membrane potential and oxidative stress, with corresponding modest improvement in fecundity but not lifespan. At 10 to 100 µm concentrations, cysteamine bitartrate improved multiple RC complex disease FBXL4 human fibroblast survival, and protected both complex I (rotenone) and complex IV (azide) Danio rerio vertebrate zebrafish disease models from brain death. Mechanistic profiling of cysteamine bitartrate effects showed it increases aspartate levels and flux, without increasing total glutathione levels. Transcriptional normalization of broadly dysregulated intermediary metabolic, glutathione, cell defense, DNA, and immune pathways was greater in RC disease human cells than in C. elegans, with similar rescue in both models of downregulated ribosomal and proteasomal pathway expression. Overall, these data suggest cysteamine bitartrate may hold therapeutic potential in RC disease, although not through obvious modulation of total glutathione levels. Careful consideration is required to determine safe and effective cysteamine bitartrate concentrations to further evaluate in clinical trials of human subjects with primary mitochondrial RC disease.


Subject(s)
Antioxidants/pharmacology , Caenorhabditis elegans Proteins/genetics , Cysteamine/pharmacology , Mitochondrial Diseases/drug therapy , NADH Dehydrogenase/genetics , Animals , Brain Death/metabolism , Brain Death/pathology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Dose-Response Relationship, Drug , Electron Transport/drug effects , F-Box Proteins/genetics , Fertility/drug effects , Fibroblasts/drug effects , Glutathione/genetics , Glutathione/metabolism , Humans , Hydrogen Peroxide , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Oxidative Stress/drug effects , Ubiquitin-Protein Ligases/genetics , Zebrafish/genetics
8.
PLoS Negl Trop Dis ; 10(10): e0005058, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27755544

ABSTRACT

BACKGROUND: The lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by deploying a high throughput screening platform for anthelmintic drug discovery using the nematode Caenorhabditis elegans as a surrogate for infectious nematodes. This method offers the possibility of identifying new anthelmintics in a cost-effective and timely manner. METHODS/PRINCIPAL FINDINGS: Using our high throughput screening platform we have identified 14 new potential anthelmintics by screening more than 26,000 compounds from the Chembridge and Maybridge chemical libraries. Using phylogenetic profiling we identified a subset of the 14 compounds as potential anthelmintics based on the relative sensitivity of C. elegans when compared to yeast and mammalian cells in culture. We showed that a subset of these compounds might employ mechanisms distinct from currently used anthelmintics by testing diverse drug resistant strains of C. elegans. One of these newly identified compounds targets mitochondrial complex II, and we used structural analysis of the target to suggest how differential binding of this compound may account for its different effects in nematodes versus mammalian cells. CONCLUSIONS/SIGNIFICANCE: The challenge of anthelmintic drug discovery is exacerbated by several factors; including, 1) the biochemical similarity between host and parasite genomes, 2) the geographic location of parasitic nematodes and 3) the rapid development of resistance. Accordingly, an approach that can screen large compound collections rapidly is required. C. elegans as a surrogate parasite offers the ability to screen compounds rapidly and, equally importantly, with specificity, thus reducing the potential toxicity of these compounds to the host and the environment. We believe this approach will help to replenish the pipeline of potential nematicides.


Subject(s)
Antinematodal Agents/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Nematode Infections/parasitology , Animals , Caenorhabditis elegans/physiology , Drug Evaluation, Preclinical , Humans , Nematoda/drug effects , Nematoda/genetics , Nematoda/physiology , Nematode Infections/drug therapy , Reverse Genetics
9.
Anal Biochem ; 450: 52-6, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24486319

ABSTRACT

A novel diagnostic tool has been developed for the characterization of intracellular pH (pHi) in the model organism Caenorhabditis elegans. This tool exploits the chemical stability of colloidal silica and the pH sensitivity of certain fluorescent dyes. Once ingested, the fluorescent colloidal dispersion yields a reliable visual indication of pH without the use of chemical fixatives or damaging the nematode. The pH-sensitive silica nanoparticles were visualized by confocal microscopy, and the fluorescence spectra from the internally referenced colloidal particulates were measured. By comparing the fluorescence profile of colloids in wild-type (N2) and mutant (eat-3) C. elegans against a calibration series, the intestinal pHi could be established in each population. The rapid characterization of pHi using this inexpensive nonintrusive technique has significant implications for disease research where C. elegans is used as a model organism.


Subject(s)
Caenorhabditis elegans/cytology , Intracellular Space/chemistry , Molecular Imaging/methods , Nanoparticles , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Fluorescent Dyes/chemistry , GTP Phosphohydrolases/genetics , Hydrogen-Ion Concentration , Microscopy, Confocal , Mutation , Silicon Dioxide/chemistry , Spectrometry, Fluorescence
10.
PLoS One ; 7(3): e33483, 2012.
Article in English | MEDLINE | ID: mdl-22457766

ABSTRACT

BACKGROUND: There are four main phenotypes that are assessed in whole organism studies of Caenorhabditis elegans; mortality, movement, fecundity and size. Procedures have been developed that focus on the digital analysis of some, but not all of these phenotypes and may be limited by expense and limited throughput. We have developed WormScan, an automated image acquisition system that allows quantitative analysis of each of these four phenotypes on standard NGM plates seeded with E. coli. This system is very easy to implement and has the capacity to be used in high-throughput analysis. METHODOLOGY/PRINCIPAL FINDINGS: Our system employs a readily available consumer grade flatbed scanner. The method uses light stimulus from the scanner rather than physical stimulus to induce movement. With two sequential scans it is possible to quantify the induced phototactic response. To demonstrate the utility of the method, we measured the phenotypic response of C. elegans to phosphine gas exposure. We found that stimulation of movement by the light of the scanner was equivalent to physical stimulation for the determination of mortality. WormScan also provided a quantitative assessment of health for the survivors. Habituation from light stimulation of continuous scans was similar to habituation caused by physical stimulus. CONCLUSIONS/SIGNIFICANCE: There are existing systems for the automated phenotypic data collection of C. elegans. The specific advantages of our method over existing systems are high-throughput assessment of a greater range of phenotypic endpoints including determination of mortality and quantification of the mobility of survivors. Our system is also inexpensive and very easy to implement. Even though we have focused on demonstrating the usefulness of WormScan in toxicology, it can be used in a wide range of additional C. elegans studies including lifespan determination, development, pathology and behavior. Moreover, we have even adapted the method to study other species of similar dimensions.


Subject(s)
Caenorhabditis elegans/physiology , Animals , Phenotype
11.
J Toxicol ; 2011: 394970, 2011.
Article in English | MEDLINE | ID: mdl-22131987

ABSTRACT

Gasotransmitters are biologically produced gaseous signalling molecules. As gases with potent biological activities, they are toxic as air pollutants, and the sulfurous compounds are used as fumigants. Most investigations focus on medical aspects of gasotransmitter biology rather than toxicity toward invertebrate pests of agriculture. In fact, the pathways for the metabolism of sulfur containing gases in lower organisms have not yet been described. To address this deficit, we use protein sequences from Homo sapiens to query Genbank for homologous proteins in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. In C. elegans, we find genes for all mammalian pathways for synthesis and catabolism of the three sulfur containing gasotransmitters, H(2)S, SO(2) and COS. The genes for H(2)S synthesis have actually increased in number in C. elegans. Interestingly, D. melanogaster and Arthropoda in general, lack a gene for 3-mercaptopyruvate sulfurtransferase, an enzym for H(2)S synthesis under reducing conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...