Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Lab Chip ; 24(9): 2551-2560, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38624013

ABSTRACT

The exploration of our solar system to characterize the molecular organic inventory will enable the identification of potentially habitable regions and initiate the search for biosignatures of extraterrestrial life. However, it is challenging to perform the required high-resolution, high-sensitivity chemical analyses in space and in planetary environments. To address this challenge, we have developed a microfluidic organic analyzer (MOA) instrument that consists of a multilayer programmable microfluidic analyzer (PMA) for fluidic processing at the microliter scale coupled with a microfabricated glass capillary electrophoresis (CE) wafer for separation and analysis of the sample components. Organic analytes are labeled with a functional group-specific (e.g. amine, organic acid, aldehyde) fluorescent dye, separated according to charge and hydrodynamic size by capillary electrophoresis (CE), and detected with picomolar limit of detection (LOD) using laser-induced fluorescence (LIF). Our goal is a sensitive automated instrument and autonomous process that enables sample-in to data-out performance in a flight capable format. We present here the design, fabrication, and operation of a technology development unit (TDU) that meets these design goals with a core mass of 3 kg and a volume of <5 L. MOA has a demonstrated resolution of 2 × 105 theoretical plates for relevant amino acids using a 15 cm long CE channel and 467 V cm-1. The LOD of LIF surpasses 100 pM (0.01 ppb), enabling biosignature detection in harsh environments on Earth. MOA is ideally suited for probing biosignatures in potentially habitable destinations on icy moons such as Europa and Enceladus, and on Mars.

2.
NPJ Microgravity ; 9(1): 41, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37286631

ABSTRACT

A programmable microfluidic organic analyzer was developed for detecting life signatures beyond Earth and clinical monitoring of astronaut health. Extensive environmental tests, including various gravitational environments, are required to confirm the functionality of this analyzer and advance its overall Technology Readiness Level. This work examines how the programmable microfluidic analyzer performed under simulated Lunar, Martian, zero, and hypergravity conditions during a parabolic flight. We confirmed that the functionality of the programmable microfluidic analyzer was minimally affected by the significant changes in the gravitational field, thus paving the way for its use in a variety of space mission opportunities.

3.
Astrobiology ; 22(6): 685-712, 2022 06.
Article in English | MEDLINE | ID: mdl-35290745

ABSTRACT

Cassini revealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from Cassini data. However, thanks to the plume of oceanic material emanating from Enceladus' south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice. In this article, we outline the science motivations for such a successor to Cassini, choosing the primary science goal to be determining whether Enceladus is inhabited and assuming a resource level equivalent to NASA's Flagship-class missions. We selected a set of potential biosignature measurements that are complementary and orthogonal to build a robust case for any life detection result. This result would be further informed by quantifications of the habitability of the environment through geochemical and geophysical investigations into the ocean and ice shell crust. This study demonstrates that Enceladus' plume offers an unparalleled opportunity for in situ exploration of an Ocean World and that the planetary science and astrobiology community is well equipped to take full advantage of it in the coming decades.


Subject(s)
Saturn , Exobiology , Extraterrestrial Environment/chemistry , Ice , Planets
4.
Anal Chem ; 94(2): 1240-1247, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34965088

ABSTRACT

Fluorescence labeling of biomolecules and fluorescence detection platforms provide a powerful approach to high-sensitivity bioanalysis. Reactive probes can be chosen to target specific functional groups to enable selective analysis of a chosen class of analytes. Particularly, when targeting trace levels of analytes, it is important to optimize the reaction chemistry to maximize the labeling efficiency and minimize the background. Here, we develop methods to optimize the labeling and detection of Pacific Blue (PB)-tagged amino acids. A model is developed to quantitate labeling kinetics and completeness in the circumstance where analyte labeling and reactive probe hydrolysis are in competition. The rates of PB hydrolysis and amino acid labeling are determined as a function of pH. Labeling kinetics and completeness as a function of PB concentration are found to depend on the ratio of the hydrolysis time to the initial labeling time, which depends on the initial PB concentration. Finally, the optimized labeling and detection conditions are used to perform capillary electrophoresis analysis demonstrating 100 pM sensitivities and high-efficiency separations of an 11 amino acid test set. This work provides a quantitative optimization model that is applicable to a variety of reactive probes and targets. Our approach is particularly useful for the analysis of trace amine and amino acid biosignatures in extraterrestrial samples. For illustration, our optimized conditions (reaction at 4 °C in a pH 8.5 buffer) are used to detect trace amino acid analytes at the 100 pM level in an Antarctic ice core sample.


Subject(s)
Amino Acids , Electrophoresis, Capillary , Amines/analysis , Amino Acids/analysis , Electrophoresis, Capillary/methods , Hydrolysis , Indicators and Reagents
5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34493668

ABSTRACT

Enceladus, an icy moon of Saturn, is a compelling destination for a probe seeking biosignatures of extraterrestrial life because its subsurface ocean exhibits significant organic chemistry that is directly accessible by sampling cryovolcanic plumes. State-of-the-art organic chemical analysis instruments can perform valuable science measurements at Enceladus provided they receive sufficient plume material in a fly-by or orbiter plume transit. To explore the feasibility of plume sampling, we performed light gas gun experiments impacting micrometer-sized ice particles containing a fluorescent dye biosignature simulant into a variety of soft metal capture surfaces at velocities from 800 m ⋅ s-1 up to 3 km ⋅ s-1 Quantitative fluorescence microscopy of the capture surfaces demonstrates organic capture efficiencies of up to 80 to 90% for isolated impact craters and of at least 17% on average on indium and aluminum capture surfaces at velocities up to 2.2 km ⋅ s-1 Our results reveal the relationships between impact velocity, particle size, capture surface, and capture efficiency for a variety of possible plume transit scenarios. Combined with sensitive microfluidic chemical analysis instruments, we predict that our capture system can be used to detect organic molecules in Enceladus plume ice at the 1 nM level-a sensitivity thought to be meaningful and informative for probing habitability and biosignatures.


Subject(s)
Biomarkers/analysis , Exobiology/methods , Extraterrestrial Environment/chemistry , Ice/analysis , Moon , Origin of Life , Saturn , Atmosphere , Feasibility Studies
6.
MethodsX ; 8: 101239, 2021.
Article in English | MEDLINE | ID: mdl-34434762

ABSTRACT

Enceladus is a prime candidate in the solar system for in-depth astrobiological studies searching for habitability and life because it has a liquid water ocean with significant organic content and ongoing cryovolcanic activity. The presence of ice plumes that jet up through fissures in the ice crust covering the sub-surface ocean, enables remote sampling and in-situ analysis via a fly-by mission. However, capture and transport of organic materials to organic analyzers presents distinctive challenges as it is unknown whether, and to what extent, organic molecules imbedded in ice particles can be captured and survive hypervelocity impacts. This manuscript provides a fluorescence microscopic method to parametrically determine the amount of an organic fluorescent tracer dye, Pacific Blue™ (PB) deposited on a metallic surface. This method can be used to measure the capture and survival outcomes of terrestrial hypervelocity impact experiments where an ice projectile labeled with Pacific Blue impacts a soft metal surface. This work is an important step in the advancement of instruments like the Enceladus Organic Analyzer for detecting biosignatures in an Enceladus plume fly-by mission. An apparatus consisting of a substrate humidification shroud coupled with an epifluorescence microscope with CCD detector is developed to measure the intensity of quantitatively deposited Pacific Blue droplets under controlled humidity. Calibration curves are produced that relate the integrated fluorescence intensity of humidified PB droplets on metal foils to the number of PB molecules deposited. To demonstrate the utility of this method, our calibrations are used to analyze and quantitate organic capture and survival (up to 11% capture efficiency) following ice particle impacts at a velocity of 1.7 km/s on an aluminum substrate.

7.
MethodsX ; 7: 101043, 2020.
Article in English | MEDLINE | ID: mdl-32995307

ABSTRACT

Microfabricated glass microfluidic and Capillary Electrophoresis (CE) devices have been utilized in a wide variety of applications over the past thirty years. At the Berkeley Space Sciences Laboratory, we are working to further expand this technology by developing analytical instruments to chemically explore our solar system. This effort requires improving the quality and reliability of glass microfabrication through quality control procedures at every stage of design and manufacture. This manuscript provides detailed information on microfabrication technology for the production of high-quality glass microfluidic chips in compliance with industrial standards and space flight instrumentation quality control.•The methodological protocol provided in this paper includes the scope of each step of the manufacturing process, materials and technologies recommended and the specific challenges that often confront the process developer.•Types and sources of fabrication error at every stage have been identified and their solutions have been proposed and verified.•We present robust and rigorous manufacturing and quality control procedures that will assist other researchers in achieving the highest possible quality glass microdevices using the latest apparatus in a routine and reliable fashion.

8.
Lab Chip ; 19(11): 1916-1921, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31070645

ABSTRACT

We have developed a highly integrated lab-on-a-chip containing embedded electrical microsensors, µdegassers and pneumatically-actuated micropumps to monitor allergic hypersensitivity. Rapid antigen-mediated histamine release (e.g. s to min) and resulting muscle contraction (<30 min) is detected by connecting an immune compartment containing sensitized basophile cells to a vascular co-culture model.


Subject(s)
Cell Communication , Hypersensitivity/diagnosis , Hypersensitivity/immunology , Lab-On-A-Chip Devices , Basophils/cytology , Basophils/immunology , Equipment Design , Time Factors
9.
J Phys Chem A ; 123(17): 3863-3875, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30952191

ABSTRACT

The characterization of specific phonon modes and exciton states that lead to efficient singlet fission (SF) may be instrumental in the design of the next generation of high-efficiency photovoltaic devices. To this end, we analyze the absolute resonance Raman (RR) cross sections for tetracene (Tc) both as a monomer in solution and as a crystalline solid in an aqueous suspension of nanocrystals. For both systems, a time-dependent wavepacket model is developed that is consistent with the absolute RR cross sections, the magnitude of the absorption cross sections, and the vibronic line shapes of the fluorescence. In the monomer, the intramolecular reorganization energy is between 1500 and 1800 cm-1 and the solvent reorganization energy is 70 cm-1. In nanocrystals, the total reorganization is diminished to less than 600 cm-1. The lowest energy exciton has an estimated intramolecular reorganization energy between 300 and 500 cm-1 while intermolecular librational phonons have a reorganization energy of about 130 cm-1. The diminished reorganization energy of the nanocrystal is interpreted in the context of the delocalization of the band-edge exciton onto about ∼7 molecules. When electron and electron-hole correlations are included within many-body perturbation theory, the polarized absorption spectra of crystalline Tc are calculated and found to be in agreement with experiment. The low-lying exciton states and optically active phonons that contribute to the polarized crystal absorption are identified. The likely role of coherent exciton phonon evolution in the SF process is discussed.

10.
Nat Commun ; 9(1): 2525, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29955070

ABSTRACT

Hybrid organic-inorganic perovskites have attractive optoelectronic properties including exceptional solar cell performance. The improved properties of perovskites have been attributed to polaronic effects involving stabilization of localized charge character by structural deformations and polarizations. Here we examine the Pb-I structural dynamics leading to polaron formation in methylammonium lead iodide perovskite by transient absorption, time-domain Raman spectroscopy, and density functional theory. Methylammonium lead iodide perovskite exhibits excited-state coherent nuclear wave packets oscillating at ~20, ~43, and ~75 cm-1 which involve skeletal bending, in-plane bending, and c-axis stretching of the I-Pb-I bonds, respectively. The amplitudes of these wave packet motions report on the magnitude of the excited-state structural changes, in particular, the formation of a bent and elongated octahedral PbI64- geometry. We have predicted the excited-state geometry and structural changes between the neutral and polaron states using a normal-mode projection method, which supports and rationalizes the experimental results. This study reveals the polaron formation via nuclear dynamics that may be important for efficient charge separation.

11.
J Phys Chem A ; 122(14): 3594-3605, 2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29558802

ABSTRACT

The time-resolved femtosecond stimulated Raman spectra (FSRS) of a charge transfer (CT) excited noncovalent complex tetracyanoethylene:1-chloronaphthalene (TCNE:ClN) in dichloromethane (DCM) is reported with 40 fs time resolution. In the frequency domain, five FSRS peaks are observed with frequencies of 534, 858, 1069, 1392, and 1926 cm-1. The most intense peaks at 534 and 1392 cm-1 correspond to fundamentals while the features at 858, 1069, and 1926 cm-1 are attributed to a difference frequency, an overtone and a combination frequency of the fundamentals, respectively. The frequency of the 1392 cm-1 fundamental corresponding to the central C═C stretch of TCNE•- is red-shifted from the frequency of the steady state radical due to the close proximity and electron affinity of the countercation. The observation of a FSRS band at a difference frequency is analyzed. This analysis lends evidence for alternative nonlinear pathways of inverse Raman gain scattering (IRGS) or vertical-FSRS (VFSRS) which may contribute to the time-evolving FSRS spectrum on-resonance. Impulsive stimulated Raman measurements of the complex show coherent oscillations of the stimulated emission with frequencies of 153, 278, and 534 cm-1. The 278 cm-1 mode corresponds to Cl bending of the dichloromethane solvent. The center frequency of the 278 cm-1 mode is modulated by a frequency of ∼30 cm-1 which is attributed to the effect of librational motion of the dichloromethane solvent as it reorganizes around the nascent contact ion pair. The 153 ± 15 cm-1 mode corresponds to an out-of-plane bending motion of TCNE. This motion modulates the intermolecular separation of the contact ion pair and thereby the overlap of the frontier orbitals which is crucial for rapid charge recombination in 5.9 ± 0.2 ps. High time-frequency resolution vibrational spectra provide unique molecular details regarding charge localization and recombination.

12.
Astrobiology ; 17(9): 902-912, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28915087

ABSTRACT

Enceladus presents an excellent opportunity to detect organic molecules that are relevant for habitability as well as bioorganic molecules that provide evidence for extraterrestrial life because Enceladus' plume is composed of material from the subsurface ocean that has a high habitability potential and significant organic content. A primary challenge is to send instruments to Enceladus that can efficiently sample organic molecules in the plume and analyze for the most relevant molecules with the necessary detection limits. To this end, we present the scientific feasibility and engineering design of the Enceladus Organic Analyzer (EOA) that uses a microfluidic capillary electrophoresis system to provide sensitive detection of a wide range of relevant organic molecules, including amines, amino acids, and carboxylic acids, with ppm plume-detection limits (100 pM limits of detection). Importantly, the design of a capture plate that effectively gathers plume ice particles at encounter velocities from 200 m/s to 5 km/s is described, and the ice particle impact is modeled to demonstrate that material will be efficiently captured without organic decomposition. While the EOA can also operate on a landed mission, the relative technical ease of a fly-by mission to Enceladus, the possibility to nondestructively capture pristine samples from deep within the Enceladus ocean, plus the high sensitivity of the EOA instrument for molecules of bioorganic relevance for life detection argue for the inclusion of EOA on Enceladus missions. Key Words: Lab-on-a-chip-Organic biomarkers-Life detection-Planetary exploration. Astrobiology 17, 902-912.

13.
Nano Lett ; 17(7): 4151-4157, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28562052

ABSTRACT

Raman and photoluminescence (PL) spectroscopy are used to investigate dynamic structure-function relationships in methylammonium lead iodide (MAPbI3) perovskite. The intensity of the 150 cm-1 methylammonium (MA) librational Raman mode is found to be correlated with PL intensities in microstructures of MAPbI3. Because of the strong hydrogen bond between hydrogens in MA and iodine in the PbI6 perovskite octahedra, the Raman activity of MA is very sensitive to structural distortions of the inorganic framework. The structural distortions directly influence PL intensities, which in turn have been correlated with microstructure quality. Our measurements, supported with first-principles calculations, indicate how excited-state MA librational displacements mechanistically control PL efficiency and lifetime in MAPbI3-material parameters that are likely important for efficient photovoltaic devices.

14.
J Mol Med (Berl) ; 94(9): 1015-24, 2016 09.
Article in English | MEDLINE | ID: mdl-27030170

ABSTRACT

UNLABELLED: Utilizing a polymorphism ratio sequencing platform, we performed a complete somatic mutation analysis of the mitochondrial D-loop region in 14 urothelial cell carcinomas. A total of 28 somatic mutations, all heteroplasmic, were detected in 8 of 14 individuals (57.1 %). Insertion/deletion changes in unstable mono- and dinucleotide repeat segments comprise the most pervasive class of mutations (9 of 28), while two recurring single-base substitution loci were identified. Seven variants, mostly insertion/deletions, represent population shifts from a heteroplasmic germline toward dominance in the tumor. In four cases, DNA from matched urine samples was similarly analyzed, with all somatic variants present in associated tumors readily detectable in the bodily fluid. Consistent with previous findings, mutant populations in urine were similar to those detected in tumor and in three of four cases were more prominent in urine. KEY MESSAGES: PRS accurately detects high mtDNA mutations in UCCs and their body fluids. mtDNA mutations are universally heteroplasmic and often appear at low levels. The PRS technology could be a viable approach to develop mitochondrial biomarkers.


Subject(s)
Carcinoma/genetics , DNA, Mitochondrial , Mutation , Polymorphism, Genetic , Urologic Neoplasms/genetics , Alleles , Carcinoma/pathology , DNA Mutational Analysis/methods , Genetic Association Studies/methods , Genetic Predisposition to Disease , Genotype , Humans , Urologic Neoplasms/pathology
15.
Acc Chem Res ; 49(4): 616-25, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27003235

ABSTRACT

Femtosecond spectroscopy has revealed coherent wave packet motion time and time again, but the question as to whether these coherences are necessary for reactivity or merely a consequence of the experiment has remained open. For diatomic systems in the gas phase, such as sodium iodide, the dimensionality of the system requires coordinated atomic motion along the reaction coordinate. Coherent dynamics are also readily observed in condensed-phase multidimensional systems such as chromophores in proteins and solvated charge transfer dimers. Is precisely choreographed nuclear motion (i.e., coherence) required for reactivity in these systems? Can this coherence reveal anything about the reaction coordinate? In this Account, we describe our efforts to tackle these questions using femtosecond stimulated Raman spectroscopy (FSRS). Results of four exemplary systems are summarized to illustrate the role coherence can play in condensed-phase reactivity, the exploitation of vibrational coherence to measure vibrational anharmonicities, and the development of two-dimensional FSRS (2D-FSRS). We begin with rhodopsin, the protein responsible for vertebrate vision. The rhodopsin photoreaction is preternaturally fast: ground-state photoproduct is formed in less than 200 fs. However, the reactively important hydrogen out-of-plane motions as well as various torsions and stretches remain vibrationally coherent long after the reaction is complete, indicating that vibrational coherence can and does survive reactive internal conversion. Both the ultrashort time scale of the reaction and the observed vibrational coherence indicate that the reaction in rhodopsin is a vibrationally coherent process. Next we examine the functional excited-state proton transfer (ESPT) reaction of green fluorescent protein. Oscillations in the phenoxy C-O and imidazolinone C═N stretches in the FSRS spectrum indicated strong anharmonic coupling to a low-frequency phenyl wagging mode that gates the ESPT reaction. In this case, the coherence revealed not only itself but also the mode coupling that is necessary for reactivity. Curious as to whether vibrational coherence is a common phenomenon, we examined two simpler photochemical systems. FSRS studies of the charge transfer dimer tetramethylbenzene:tetracyanoquinodimethane revealed many vibrational oscillations with high signal-to-noise ratio that allowed us to develop a 2D-FSRS technique to quantitatively measure anharmonic vibrational coupling for many modes within a reacting excited state. Armed with this technique, we turned our attention to a bond-breaking reaction, the cycloreversion of a cyclohexadiene derivative. By means of 2D-FSRS, the vibrational composition of the excited-state transition state and therefore the reaction coordinate was revealed. In aggregate, these FSRS measurements demonstrate that vibrational coherences persist for many picoseconds in condensed phases at room temperature and can survive reactive internal conversion. Moreover, these coherences can be leveraged to reveal quantitative anharmonic couplings between a molecule's normal modes in the excited state. These anharmonic couplings are the key to determining how normal modes combine to form a reaction coordinate. It is becoming clear that condensed-phase photochemical reactions that occur in 10 ps or less require coordinated, coherent nuclear motion for efficient reactive internal conversion.

16.
Chemphyschem ; 17(9): 1224-51, 2016 05 04.
Article in English | MEDLINE | ID: mdl-26919612

ABSTRACT

Femtosecond stimulated Raman spectroscopy (FSRS) is an ultrafast nonlinear optical technique that provides vibrational structural information with high temporal (sub-50 fs) precision and high spectral (10 cm(-1) ) resolution. Since the first full demonstration of its capabilities ≈15 years ago, FSRS has evolved into a mature technique, giving deep insights into chemical and biochemical reaction dynamics that would be inaccessible with any other technique. It is now being routinely applied to virtually all possible photochemical reactions and systems spanning from single molecules in solution to thin films, bulk crystals and macromolecular proteins. This review starts with an historic overview and discusses the theoretical and experimental concepts behind this technology. Emphasis is put on the current state-of-the-art experimental realization and several variations of FSRS that have been developed. The unique capabilities of FSRS are illustrated through a comprehensive presentation of experiments to date followed by prospects.


Subject(s)
Spectrum Analysis, Raman/methods , Time Factors
17.
Lab Chip ; 16(5): 812-9, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26864083

ABSTRACT

Programmable microfluidic platforms (PMPs) are enabling significant advances in the utility of microfluidics for chemical and biochemical analysis. Traditional microfluidic devices are analogous to application-specific devices--a new device is needed to implement each new chemical or biochemical assay. PMPs are analogous to digital electronic processors--all that is needed to implement a new assay is a change in the order of operations conducted by the device. In this review, we introduce PMPs based on normally-closed microvalves. We discuss recent applications of PMPs in diverse fields including genetic analysis, antibody-based biomarker analysis, and chemical analysis in planetary exploration. Prospects, challenges, and future concepts for this emerging technology will also be presented.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Humans
18.
Biosens Bioelectron ; 79: 371-8, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26735871

ABSTRACT

A microfluidic hydrogel DNA microarray is developed to overcome the limitations of conventional planar microarrays such as low sensitivity, long overnight hybridization time, lack of a melting verification of proper hybrid, and complicated sample preparation process for genotyping of clinical samples. Unlike our previous prototype hydrogel array which can analyze only single-stranded DNA (ssDNA) targets, the device is the first of its type to allow direct multiplexed single nucleotide polymorphism (SNP) detection of human clinical samples comprising double-stranded DNA (dsDNA). This advance is made possible by incorporating a streptavidin (SA) hydrogel capture/purification element in a double T-junction at the start of the linear hydrogel array structure and fabricating ten different probe DNAs-entrapped hydrogels in microfluidic channels. The purified or unpurified polymerase chain reaction (PCR) products labeled with a fluorophore and a biotin are electrophoresed through the SA hydrogel for binding and purification. After electrophoretic washing, the fluorophore-labeled DNA strand is then thermally released for hybridization capture by its complementary probe gel element. We demonstrate the precise and rapid discrimination of the genotypes of five different clinical targets by melting curve analysis based on temperature-gradient electrophoresis within 3h, which is at least 3-fold decrease in incubation time compared to conventional microarrays. In addition, a 1.7 pg (0.024 femtomoles) limit of detection for clinical samples is achieved which is ~100-fold better sensitivity than planar microarrays.


Subject(s)
Biosensing Techniques , DNA/genetics , Genotyping Techniques , Microfluidics/methods , DNA Probes/chemistry , DNA Probes/genetics , Genotype , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide/genetics
19.
Chemphyschem ; 17(3): 369-74, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26630441

ABSTRACT

Phytochromes are protein-based photoreceptors harboring a bilin-based photoswitch in the active site. The timescale of photosignaling via C15 =C16 E-to-Z photoisomerization has been ambiguous in the far-red-absorbing Pfr state. Here we present a unified view of the structural events in phytochrome Cph1 post excitation with femtosecond precision, obtained via stimulated Raman and polarization-resolved transient IR spectroscopy. We demonstrate that photoproduct formation occurs within 700 fs, determined by a two-step partitioning process initiated by a planarization on the electronic excited state with a 300 fs time scale. The ultrafast isomerization timescale for Pfr -to-Pr conversion highlights the active role of the nonbonding methyl-methyl clash initiating the reaction in the excited state. We envision that our results will motivate the synthesis of new artificial photoswitches with precisely tuned non-bonded interactions for ultrafast response.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/radiation effects , Bile Pigments/chemistry , Bile Pigments/radiation effects , Photochemical Processes , Phytochrome/chemistry , Phytochrome/radiation effects , Protein Kinases/chemistry , Protein Kinases/radiation effects , Photoreceptors, Microbial , Stereoisomerism , Time Factors
20.
Nat Chem ; 7(12): 945-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26587705
SELECTION OF CITATIONS
SEARCH DETAIL
...