Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Parkinsons Dis ; 10(1): 77, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580641

ABSTRACT

Subthalamic beta band activity (13-35 Hz) is known as a real-time correlate of motor symptom severity in Parkinson's disease (PD) and is currently explored as a feedback signal for closed-loop deep brain stimulation (DBS). Here, we investigate the interaction of movement, dopaminergic medication, and deep brain stimulation on subthalamic beta activity in PD patients implanted with sensing-enabled, implantable pulse generators. We recorded subthalamic activity from seven PD patients at rest and during repetitive movements in four conditions: after withdrawal of dopaminergic medication and DBS, with medication only, with DBS only, and with simultaneous medication and DBS. Medication and DBS showed additive effects in improving motor performance. Distinct effects of each therapy were seen in subthalamic recordings, with medication primarily suppressing low beta activity (13-20 Hz) and DBS being associated with a broad decrease in beta band activity (13-35 Hz). Movement suppressed beta band activity compared to rest. This suppression was most prominent when combining medication with DBS and correlated with motor improvement within patients. We conclude that DBS and medication have distinct effects on subthalamic beta activity during both rest and movement, which might explain their additive clinical effects as well as their difference in side-effect profiles. Importantly, subthalamic beta activity significantly correlated with motor symptoms across all conditions, highlighting its validity as a feedback signal for closed-loop DBS.

2.
Brain Commun ; 5(6): fcad298, 2023.
Article in English | MEDLINE | ID: mdl-38025271

ABSTRACT

Connectivity-derived 7-Tesla MRI segmentation and intraoperative microelectrode recording can both assist subthalamic nucleus targeting for deep brain stimulation in Parkinson's disease. It remains unclear whether deep brain stimulation electrodes placed in the 7-Tesla MRI segmented subdivision with predominant projections to cortical motor areas (hyperdirect pathway) achieve superior motor improvement and whether microelectrode recording can accurately distinguish the motor subdivision. In 25 patients with Parkinson's disease, deep brain stimulation electrodes were evaluated for being inside or outside the predominantly motor-connected subthalamic nucleus (motor-connected subthalamic nucleus or non-motor-connected subthalamic nucleus, respectively) based on 7-Tesla MRI connectivity segmentation. Hemi-body motor improvement (Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III) and microelectrode recording characteristics of multi- and single-unit activities were compared between groups. Deep brain stimulation electrodes placed in the motor-connected subthalamic nucleus resulted in higher hemi-body motor improvement, compared with electrodes placed in the non-motor-connected subthalamic nucleus (80% versus 52%, P < 0.0001). Multi-unit activity was found slightly higher in the motor-connected subthalamic nucleus versus the non-motor-connected subthalamic nucleus (P < 0.001, receiver operating characteristic 0.63); single-unit activity did not differ between groups. Deep brain stimulation in the connectivity-derived 7-Tesla MRI subthalamic nucleus motor segment produced a superior clinical outcome; however, microelectrode recording did not accurately distinguish this subdivision within the subthalamic nucleus.

3.
Sensors (Basel) ; 23(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299968

ABSTRACT

Bradykinesia is a cardinal hallmark of Parkinson's disease (PD). Improvement in bradykinesia is an important signature of effective treatment. Finger tapping is commonly used to index bradykinesia, albeit these approaches largely rely on subjective clinical evaluations. Moreover, recently developed automated bradykinesia scoring tools are proprietary and are not suitable for capturing intraday symptom fluctuation. We assessed finger tapping (i.e., Unified Parkinson's Disease Rating Scale (UPDRS) item 3.4) in 37 people with Parkinson's disease (PwP) during routine treatment follow ups and analyzed their 350 sessions of 10-s tapping using index finger accelerometry. Herein, we developed and validated ReTap, an open-source tool for the automated prediction of finger tapping scores. ReTap successfully detected tapping blocks in over 94% of cases and extracted clinically relevant kinematic features per tap. Importantly, based on the kinematic features, ReTap predicted expert-rated UPDRS scores significantly better than chance in a hold out validation sample (n = 102). Moreover, ReTap-predicted UPDRS scores correlated positively with expert ratings in over 70% of the individual subjects in the holdout dataset. ReTap has the potential to provide accessible and reliable finger tapping scores, either in the clinic or at home, and may contribute to open-source and detailed analyses of bradykinesia.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Hypokinesia/diagnosis , Fingers , Biomechanical Phenomena
4.
Mov Disord ; 38(4): 692-697, 2023 04.
Article in English | MEDLINE | ID: mdl-36718788

ABSTRACT

BACKGROUND: Subthalamic nucleus (STN) beta (13 - 35 Hz) activity is a biomarker reflecting motor state in Parkinson's disease (PD). Adaptive deep brain stimulation (DBS) aims to use beta activity for therapeutic adjustments, but many aspects of beta activity in real-life situations are unknown. OBJECTIVE: The aim was to investigate Christmas-related influences on beta activity in PD. METHODS: Differences in Christmas Day to nonfestive daily averages in chronic biomarker recordings in 4 PD patients with a sensing-enabled STN DBS implant were retrospectively analyzed. Sweet-spot and whole-brain network connectomic analyses were performed. RESULTS: Beta activity was significantly reduced on Christmas Eve in all patients (4.00-9.00 p.m.: -12.30 ± 10.78%, P = 0.015). A sweet spot in the dorsolateral STN connected recording sites to motor, premotor, and supplementary motor cortices. CONCLUSIONS: We demonstrate that festive events can reduce beta biomarker activity. We conclude that circadian and holiday-related changes should be considered when tailoring adaptive DBS algorithms to patient demands. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Deep Brain Stimulation , Motor Cortex , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Retrospective Studies , Subthalamic Nucleus/physiology
5.
Neuromodulation ; 26(2): 333-339, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35216874

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective surgical treatment for patients with advanced Parkinson disease (PD). Combining 7.0-Tesla (7T) T2- and diffusion-weighted imaging (DWI) sequences allows for selective segmenting of the motor part of the STN and, thus, for possible optimization of DBS. MATERIALS AND METHODS: 7T T2 and DWI sequences were obtained, and probabilistic segmentation of motor, associative, and limbic STN segments was performed. Left- and right-sided motor outcome (Movement Disorders Society Unified Parkinson's Disease Rating Scale) scores were used for evaluating the correspondence between the active electrode contacts in selectively segmented STN and the clinical DBS effect. The Bejjani line was reviewed for crossing of segments. RESULTS: A total of 50 STNs were segmented in 25 patients and proved highly feasible. Although the highest density of motor connections was situated in the dorsolateral STN for all patients, the exact partitioning of segments differed considerably. For all the active electrode contacts situated within the predominantly motor-connected segment of the STN, the average hemi-body Unified Parkinson's Disease Rating Scale motor improvement was 80%; outside this segment, it was 52% (p < 0.01). The Bejjani line was situated in the motor segment for 32 STNs. CONCLUSION: The implementation of 7T T2 and DWI segmentation of the STN in DBS for PD is feasible and offers insight into the location of the motor segment. Segmentation-guided electrode placement is likely to further improve motor response in DBS for PD. However, commercially available DBS software for postprocessing imaging would greatly facilitate widespread implementation.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Parkinson Disease/drug therapy , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/physiology , Deep Brain Stimulation/methods , Treatment Outcome , Electrodes
6.
NPJ Parkinsons Dis ; 8(1): 88, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35804160

ABSTRACT

Beta-band activity in the subthalamic local field potential (LFP) is correlated with Parkinson's disease (PD) symptom severity and is the therapeutic target of deep brain stimulation (DBS). While beta fluctuations in PD patients are well characterized on shorter timescales, it is not known how beta activity evolves around the diurnal cycle, outside a clinical setting. Here, we obtained chronic recordings (34 ± 13 days) of subthalamic beta power in PD patients implanted with the Percept DBS device during high-frequency DBS and analysed their diurnal properties as well as sensitivity to artifacts. Time of day explained 41 ± 9% of the variance in beta power (p < 0.001 in all patients), with increased beta during the day and reduced beta at night. Certain movements affected LFP quality, which may have contributed to diurnal patterns in some patients. Future DBS algorithms may benefit from taking such diurnal and artifactual fluctuations in beta power into account.

SELECTION OF CITATIONS
SEARCH DETAIL
...