Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Strahlenther Onkol ; 198(10): 907-918, 2022 10.
Article in English | MEDLINE | ID: mdl-35980455

ABSTRACT

PURPOSE: Cranial stereotactic radiotherapy (SRT) requires highly accurate lesion delineation. However, MRI can have significant inherent geometric distortions. We investigated how well the Elements Cranial Distortion Correction algorithm of Brainlab (Munich, Germany) corrects the distortions in MR image-sets of a phantom and patients. METHODS: A non-distorted reference computed tomography image-set of a CIRS Model 603-GS (CIRS, Norfolk, VA, USA) phantom was acquired. Three-dimensional T1-weighted images were acquired with five MRI scanners and reconstructed with vendor-derived distortion correction. Some were reconstructed without correction to generate heavily distorted image-sets. All MR image-sets were corrected with the Brainlab algorithm relative to the computed tomography acquisition. CIRS Distortion Check software measured the distortion in each image-set. For all uncorrected and corrected image-sets, the control points that exceeded the 0.5-mm clinically relevant distortion threshold and the distortion maximum, mean, and standard deviation were recorded. Empirical cumulative distribution functions (eCDF) were plotted. Intraclass correlation coefficient (ICC) was calculated. The algorithm was evaluated with 10 brain metastases using Dice similarity coefficients (DSC). RESULTS: The algorithm significantly reduced mean and standard deviation distortion in all image-sets. It reduced the maximum distortion in the heavily distorted image-sets from 2.072 to 1.059 mm and the control points with > 0.5-mm distortion fell from 50.2% to 4.0%. Before and especially after correction, the eCDFs of the four repeats were visually similar. ICC was 0.812 (excellent-good agreement). The algorithm increased the DSCs for all patients and image-sets. CONCLUSION: The Brainlab algorithm significantly and reproducibly ameliorated MRI distortion, even with heavily distorted images. Thus, it increases the accuracy of cranial SRT lesion delineation. After further testing, this tool may be suitable for SRT of small lesions.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Tomography, X-Ray Computed
2.
Phys Rev Lett ; 122(1): 014502, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012675

ABSTRACT

We report the spontaneous formation of spiral patterns observed at a downward-facing free surface of a horizontal liquid film. The surface is unstable to the Rayleigh-Taylor instability and the resulting liquid discharge from the film can occur in the form of propagating liquid curtains. They are born at the film circular periphery and exhibit patterns of inwardly rotating spiral arms. With the help of a phenomenologically constructed cellular automaton, we show that the patterns arise from the phase locking leading to periodic liquid discharge at constant flow rate over the whole film surface.

3.
Soft Matter ; 13(25): 4482-4493, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28580485

ABSTRACT

Understanding sliding and load-bearing mechanisms of biphasic soft matter is crucial for designing synthetic replacements of cartilage, contact-lens materials or coatings for medical instruments. Interstitial fluid pressurization is believed to be the intrinsic load-carrying phenomenon governing the frictional properties. In this study, we have characterized permeability and identified the fluid contribution to the support of load during Atomic Force Microscopy (AFM) nanoindentation of soft polymer brushes in aqueous environments, by means of the Proper Generalized Decomposition (PGD) approach. First, rate-dependent AFM nanoindentation was performed on a poly(acrylamide) (PAAm) brush in an aqueous environment, to probe the purely elastic as well as poro-viscoelastic properties. Second, a biphasic model decoupling the fluid and solid load contributions was proposed, using Darcy's equation for liquid flow in porous media. Using realistic time-dependent simulations requires many direct solutions of the 3D partial differential equation, making modeling very time-consuming. To efficiently alleviate the time-consumption of multi-dimensional modeling, we used PGD to solve a Darcy model defined in a 7D domain, considering all the unknowns and material properties as extra coordinates of the problem. The obtained 7D simulation results were compared to the experimental results by using a direct Newton algorithm, since all sensitivities with respect to the model parameters are readily available. Thus, a simulation-based solution for depth- and rate-dependent permeability can be obtained. From the PGD-based model permeability is calculated, and the velocity- and pressure-fields in the material can be obtained in real-time in 3D by adjusting the parameters to the experimental values. The result is a step forward in understanding the fluid flow, permeability and fluid contributions to the load support of biphasic soft matter.

4.
Langmuir ; 32(30): 7588-95, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27397856

ABSTRACT

Solvent interactions with bulk and surface-bound polymer brushes are crucial for functionalities such as controlled friction and thermoresponsive adhesion. To study such interactions, the temperature-induced solvent-quality changes and the effect of surface tethering on the mechanical and tribological properties of poly(dodecyl methacrylate) (P12MA) brushes have been investigated by means of attenuated total reflection infrared spectroscopy (ATR-IR), as well as atomic force microscopy (AFM) and lateral force microscopy (LFM). These results have been compared with temperature-dependent UV-visible spectrophotometry (UV-vis) data for the corresponding bulk polymer solutions. The ATR-IR results clearly show that increasing temperature enhances ethanol uptake in P12MA, which results in film swelling. This is accompanied by a marked increase in both adhesion and friction. We have also shown that a combination of solvents, such as toluene and ethanol, can lead to a temperature-dependent solvent partitioning within the polymer brush. To our knowledge this is the first time preferential solvent uptake in a grafted-from brush has been monitored via in situ ATR-IR. Moreover, we have observed remarkably different behavior for polymer chains in solution compared to the behavior of similar chains bound to a surface. The presented findings on the temperature-dependent solvent interactions of surface-grafted P12MA reveal previously unknown solvation phenomena and open up a range of possible applications in the area of stimuli-responsive materials.

6.
Phys Rev Lett ; 97(18): 184501, 2006 Nov 03.
Article in English | MEDLINE | ID: mdl-17155545

ABSTRACT

In this Letter, we study experimentally a viscous liquid curtain in an annular geometry. Gap and median radius can be varied in such a way that the base of the initially stationary cylindrical curtain is led to oscillate by decreasing the flow rate. Standing and traveling waves in the plane of the annulus are observed and a nontrivial expression linking pulsation to flow rate per surface unit and viscosity can be defined.

7.
Phys Rev Lett ; 94(13): 134502, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15903995

ABSTRACT

We study the transition to spatiotemporal chaos in a two-dimensional hydrodynamic experiment where liquid columns take place in the gravity induced instability of a liquid film. The film is formed below a plane grid which is used as a porous media and is continuously supplied with a controlled flow rate. This system can be either ordered (on a hexagonal structure) or disordered depending on the flow rate. We observe, for the first time in an initially structured state, a subcritical transition to spatiotemporal disorder which arises through spatiotemporal intermittency. Statistics of numbers, creations, and fusions of columns are investigated. We exhibit a critical behavior close to the directed percolation one.

8.
Conf Proc IEEE Eng Med Biol Soc ; 2004: 2726-9, 2004.
Article in English | MEDLINE | ID: mdl-17270840

ABSTRACT

For people affected by stroke, frequent physical therapy has been shown to be an effective form of rehabilitation. To this goal, several home therapy devices have been developed. Many of these devices may benefit from the use of a bidirectional pneumatic muscle actuator. This work presents the concept and design of the double-acting, compliant, spring over muscle (SOM) actuator. The principle design uses a spring in parallel with a pneumatic muscle actuator. This concept is economical, and easily scalable. Additionally, a design proposal for an ankle rehabilitation device, which incorporates the SOM actuator, is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...