Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Small Methods ; : e2400203, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38803318

ABSTRACT

Controlled fabrication of nanopores in 2D materials offer the means to create robust membranes needed for ion transport and nanofiltration. Techniques for creating nanopores have relied upon either plasma etching or direct irradiation; however, aberration-corrected scanning transmission electron microscopy (STEM) offers the advantage of combining a sub-Å sized electron beam for atomic manipulation along with atomic resolution imaging. Here, a method for automated nanopore fabrication is utilized with real-time atomic visualization to enhance the mechanistic understanding of beam-induced transformations. Additionally, an electron beam simulation technique, Electron-Beam Simulator (E-BeamSim) is developed to observe the atomic movements and interactions resulting from electron beam irradiation. Using the MXene Ti3C2Tx, the influence of temperature on nanopore fabrication is explored by tracking atomic transformations and find that at room temperature the electron beam irradiation induces random displacement and results in titanium pileups at the nanopore edge, which is confirmed by E-BeamSim. At elevated temperatures, after removal of the surface functional groups and with the increased mobility of atoms results in atomic transformations that lead to the selective removal of atoms layer by layer. This work can lead to the development of defect engineering techniques within functionalized MXene layers and other 2D materials.

2.
Nat Commun ; 14(1): 1322, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36898985

ABSTRACT

The hydration structure of protons has been studied for decades in bulk water and protonated clusters due to its importance but has remained elusive in planar confined environments. Two-dimensional (2D) transition metal carbides known as MXenes show extreme capacitance in protic electrolytes, which has attracted attention in the energy storage field. We report here that discrete vibrational modes related to protons intercalated in the 2D slits between Ti3C2Tx MXene layers can be detected using operando infrared spectroscopy. The origin of these modes, not observed for protons in bulk water, is attributed to protons with reduced coordination number in confinement based on Density Functional Theory calculations. This study therefore demonstrates a useful tool for the characterization of chemical species under 2D confinement.

3.
J Phys Chem Lett ; 14(6): 1578-1584, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36748744

ABSTRACT

Highly concentrated water-in-salt aqueous electrolytes exhibit a wider potential window compared to conventional, dilute aqueous electrolytes. Coupled with MXenes, a family of two-dimensional transition metal carbides and nitrides with impressive charge storage capabilities, water-in-salt electrolytes present a potential candidate to replace flammable and toxic organic solvents in electrochemical energy storage devices. A new charge storage mechanism was recently discovered during electrochemical cycling of Ti3C2Tx MXene electrodes in lithium-based water-in-salt electrolytes, attributed to intercalation and deintercalation of solvated Li+ ions at anodic potentials. Nevertheless, direct evidence of the state of Li+ solvation during cycling is still missing. Here, we investigate the hydrogen bonding of water intercalated between MXene layers during electrochemical cycling in a water-in-salt electrolyte with operando infrared spectroscopy. The hydrogen-bonding state of the confined water was found to change significantly as a function of potential and the concentration of Li+ ions in the interlayer space. This study provides fundamentally new insights into the electrolyte structural changes while intercalating Li+ in the MXene interlayer space.

4.
Nat Nanotechnol ; 17(11): 1192-1197, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36138199

ABSTRACT

The MXene family of two-dimensional transition metal carbides and nitrides already includes ~50 members with distinct numbers of atomic layers, stoichiometric compositions and solid solutions, in-plane or out-of-plane ordering of atoms, and a variety of surface terminations. MXenes have shown properties that make them attractive for applications ranging from energy storage to electronics and medicine. Although this compositional variability allows fine-tuning of the MXene properties, it also creates challenges during the analysis of MXenes because of the presence of multiple light elements (for example, H, C, N, O, and F) in close proximity. Here, we show depth profiling of single particles of MXenes and their parent MAX phases with atomic resolution using ultralow-energy secondary-ion mass spectrometry. We directly detect oxygen in the carbon sublattice, thereby demonstrating the existence of oxycarbide MXenes. We also determine the composition of adjacent surface termination layers and show their interaction with each other. Analysis of the metal sublattice shows that Mo2TiAlC2 MAX exhibits perfect out-of-plane ordering, whereas Cr2TiAlC2 MAX exhibits some intermixing between Cr and Ti in the inner transition metal layer. Our results showcase the capabilities of the developed secondary-ion mass spectrometry technique to probe the composition of layered and two-dimensional materials with monoatomic-layer precision.

5.
ACS Nano ; 15(9): 15274-15284, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34415730

ABSTRACT

Identifying and understanding charge storage mechanisms is important for advancing energy storage. Well-separated peaks in cyclic voltammograms (CVs) are considered key indicators of diffusion-controlled electrochemical processes with distinct Faradaic charge transfer. Herein, we report on an electrochemical system with separated CV peaks, accompanied by surface-controlled partial charge transfer, in 2D Ti3C2Tx MXene in water-in-salt electrolytes. The process involves the insertion/desertion of desolvation-free cations, leading to an abrupt change of the interlayer spacing between MXene sheets. This unusual behavior increases charge storage at positive potentials, thereby increasing the amount of energy stored. This also demonstrates opportunities for the development of high-rate aqueous energy storage devices and electrochemical actuators using safe and inexpensive aqueous electrolytes.

6.
ACS Appl Mater Interfaces ; 13(36): 43597-43605, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34464097

ABSTRACT

MXenes are a large family of two-dimensional materials that are attractive for energy storage due to their high-rate charging capabilities as well as for electrochemical actuators, water purification, and many other technologies. Ion intercalation during electrochemically driven charge and discharge processes is the fundamental process associated with MXene functionality, which we have characterized using in situ and operando X-ray reflectivity (XRR). Experiments performed at the Advanced Photon Source at Argonne National Laboratory monitored the changes in the structure of a Ti3C2 MXene film on a platinum current collector as a function of static applied potential between 0.3 and -0.7 V vs Ag/AgCl in an aqueous 0.1 M Li2SO4 electrolyte. Negative potential sweeps lead to a contraction of 1.2 Å in the interlayer spacing and a loss of electron density between the layers, likely due to Li+ ion insertion and water removal. The change in lattice spacing includes a continuous variation vs potential as well as an additional discrete contraction that occurs near -0.35 V that has the characteristics of a first-order transition. The continuous change in the MXene interlayer spacing is associated with the capacitive charge, while the discrete change in structure correlated to the weak feature in the cyclic voltammogram at -0.35 V can be interpreted as either a pseudocapacitive charging process or a potential-dependent change in capacity.

7.
ACS Nano ; 15(4): 6420-6429, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33848136

ABSTRACT

One of the primary factors limiting further research and commercial use of the two-dimensional (2D) titanium carbide MXene Ti3C2, as well as MXenes in general, is the rate at which freshly made samples oxidize and degrade when stored as aqueous suspensions. Here, we show that including excess aluminum during synthesis of the Ti3AlC2 MAX phase precursor leads to Ti3AlC2 grains with improved crystallinity and carbon stoichiometry (termed Al-Ti3AlC2). MXene nanosheets (Al-Ti3C2) produced from this precursor are of higher quality, as evidenced by their increased resistance to oxidation and an increase in their electronic conductivity up to 20 000 S/cm. Aqueous suspensions of stoichiometric single- to few-layer Al-Ti3C2 flakes produced from the modified Al-Ti3AlC2 have a shelf life of over ten months, compared to 1 to 2 weeks for previously published Ti3C2, even when stored in ambient conditions. Freestanding films made from Al-Ti3C2 suspensions stored for ten months show minimal decreases in electrical conductivity and negligible oxidation. Furthermore, oxidation of the improved Al-Ti3C2 in air initiates at temperatures that are 100-150 °C higher than that of conventional Ti3C2. The observed improvements in both the shelf life and properties of Al-Ti3C2 will facilitate the widespread use of this material.

8.
Nat Commun ; 11(1): 6160, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33268791

ABSTRACT

Improving the accessibility of ions in the electrodes of electrochemical energy storage devices is vital for charge storage and rate performance. In particular, the kinetics of ion transport in organic electrolytes is slow, especially at low operating temperatures. Herein, we report a new type of MXene-carbon nanotube (CNT) composite electrode that maximizes ion accessibility resulting in exceptional rate performance at low temperatures. The improved ion transport at low temperatures is made possible by breaking the conventional horizontal alignment of the two-dimensional layers of the MXene Ti3C2 by using specially designed knotted CNTs. The large, knot-like structures in the knotted CNTs prevent the usual restacking of the Ti3C2 flakes and create fast ion transport pathways. The MXene-knotted CNT composite electrodes achieve high capacitance (up to 130 F g-1 (276 F cm-3)) in organic electrolytes with high capacitance retention over a wide scan rate range of 10 mV s-1 to 10 V s-1. This study is also the first report utilizing MXene-based supercapacitors at low temperatures (down to -60 °C).

9.
Angew Chem Int Ed Engl ; 58(49): 17849-17855, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31574196

ABSTRACT

MXenes are a class of two-dimensional (2D) transition metal carbides, nitrides and carbonitrides that have shown promise for high-rate pseudocapacitive energy storage. However, the effects that irreversible oxidation have on the surface chemistry and electrochemical properties of MXenes are still not understood. Here we report on a controlled anodic oxidation method which improves the rate performance of titanium carbide MXene (Ti3 C2 Tx, Tx refers to -F, =O, -Cl and -OH) electrodes in acidic electrolytes. The capacitance retention at 2000 mV s-1 (with respect to the lowest scan rate of 5 mV s-1 ) increases gradually from 38 % to 66 % by tuning the degree of anodic oxidation. At the same time, a loss in the redox behavior of Ti3 C2 Tx is evident at high anodic potentials after oxidation. Several analysis methods are employed to reveal changes in the structure and surface chemistry while simultaneously introducing defects, without compromising electrochemically active sites, are key factors for improving the rate performance of Ti3 C2 Tx . This study demonstrates improvement of the electrochemical performance of MXene electrodes by performing a controlled anodic oxidation.

10.
J Am Chem Soc ; 140(28): 8910-8917, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29928793

ABSTRACT

Although significant progress has been achieved in understanding of ion-exchange mechanisms in the new family of 2D transition metal carbides and nitrides known as MXenes, direct gravimetric assessment of water insertion into the MXene interlayer spaces and mesopores has not been reported so far. Concurrently, the latest research on MXene and Birnessite electrodes shows that nanoconfined water dramatically improves their gravimetric capacity and rate capability. Hence, quantification of the amount of confined water in solvated electrodes is becoming an important goal of energy-related research. Using the recently developed and highly sensitive method of in situ hydrodynamic spectroscopy (based on surface-acoustic probing of solvated interfaces), we provide clear evidence that typical cosmotropic cations (Li+, Mg2+, and Al3+) are inserted into the MXene interspaces in their partially hydrated form, in contrast to the insertion of chaotropic cations (Cs+ and TEA+), which effectively dehydrate the MXene. These new findings provide important information about the charge-storage mechanisms in layered materials by direct quantification and efficient control (management) over the amount of confined fluid in a variety of solvated battery/supercapacitor electrodes. We believe that the proposed monitoring of water content as a function of the nature of ions can be equally applied to solvated biointerfaces, such as the ion channels of membrane proteins.

11.
Nature ; 557(7705): 409-412, 2018 05.
Article in English | MEDLINE | ID: mdl-29769673

ABSTRACT

The scalable and sustainable manufacture of thick electrode films with high energy and power densities is critical for the large-scale storage of electrochemical energy for application in transportation and stationary electric grids. Two-dimensional nanomaterials have become the predominant choice of electrode material in the pursuit of high energy and power densities owing to their large surface-area-to-volume ratios and lack of solid-state diffusion1,2. However, traditional electrode fabrication methods often lead to restacking of two-dimensional nanomaterials, which limits ion transport in thick films and results in systems in which the electrochemical performance is highly dependent on the thickness of the film1-4. Strategies for facilitating ion transport-such as increasing the interlayer spacing by intercalation5-8 or introducing film porosity by designing nanoarchitectures9,10-result in materials with low volumetric energy storage as well as complex and lengthy ion transport paths that impede performance at high charge-discharge rates. Vertical alignment of two-dimensional flakes enables directional ion transport that can lead to thickness-independent electrochemical performances in thick films11-13. However, so far only limited success11,12 has been reported, and the mitigation of performance losses remains a major challenge when working with films of two-dimensional nanomaterials with thicknesses that are near to or exceed the industrial standard of 100 micrometres. Here we demonstrate electrochemical energy storage that is independent of film thickness for vertically aligned two-dimensional titanium carbide (Ti3C2T x ), a material from the MXene family (two-dimensional carbides and nitrides of transition metals (M), where X stands for carbon or nitrogen). The vertical alignment was achieved by mechanical shearing of a discotic lamellar liquid-crystal phase of Ti3C2T x . The resulting electrode films show excellent performance that is nearly independent of film thickness up to 200 micrometres, which makes them highly attractive for energy storage applications. Furthermore, the self-assembly approach presented here is scalable and can be extended to other systems that involve directional transport, such as catalysis and filtration.

12.
Nanoscale ; 10(13): 6005-6013, 2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29542799

ABSTRACT

Free-standing, highly flexible and foldable supercapacitor electrodes were fabricated through the spray-coating assisted layer-by-layer assembly of Ti3C2Tx (MXene) nanoflakes together with multi-walled carbon nanotubes (MWCNTs) on electrospun polycaprolactone (PCL) fiber networks. The open structure of the PCL network and the use of MWCNTs as spacers not only limit the restacking of Ti3C2Tx flakes but also increase the accessible surface of the active materials, facilitating fast diffusion of electrolyte ions within the electrode. Composite electrodes have areal capacitance (30-50 mF cm-2) comparable to other templated electrodes reported in the literature, but showed significantly improved rate performance (14-16% capacitance retention at a scan rate of 100 V s-1). Furthermore, the composite electrodes are flexible and foldable, demonstrating good tolerance against repeated mechanical deformation, including twisting and folding. Therefore, these tens of micron thick fiber electrodes will be attractive for applications in energy storage, electroanalytical chemistry, brain electrodes, electrocatalysis and other fields, where flexible freestanding electrodes with an open and accessible surface are highly desired.

13.
Angew Chem Int Ed Engl ; 57(19): 5444-5448, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29518271

ABSTRACT

Until now, MXenes could only be produced from MAX phases containing aluminum, such as Ti3 AlC2 . Here, we report on the synthesis of Ti3 C2 (MXene) through selective etching of silicon from titanium silicon carbide-the most common MAX phase. Liters of colloidal solutions of delaminated Ti3 SiC2 -derived MXene (0.5-1.3 mg mL-1 ) were produced and processed into flexible and electrically conductive films, which show higher oxidation resistance than MXene synthesized from Ti3 AlC2 . This new synthesis method greatly widens the range of precursors for MXene synthesis.

14.
J Am Chem Soc ; 139(51): 18681-18687, 2017 12 27.
Article in English | MEDLINE | ID: mdl-29185334

ABSTRACT

Ion-ion interactions in supercapacitor (SC) electrolytes are considered to have significant influence over the charging process and therefore the overall performance of the SC system. Current strategies used to weaken ionic interactions can enhance the power of SCs, but consequently, the energy density will decrease due to the increased distance between adjacent electrolyte ions at the electrode surface. Herein, we report on the simultaneous enhancement of the power and energy densities of a SC using an ionic mixture electrolyte with different types of ionic interactions. Two types of cations with stronger ionic interactions can be packed in a denser arrangement in mesopores to increase the capacitance, whereas only cations with weaker ionic interactions are allowed to enter micropores without sacrificing the power density. This unique selective charging behavior in different confined porous structure was investigated by solid-state nuclear magnetic resonance experiments and further confirmed theoretically by both density functional theory and molecular dynamics simulations. Our results offer a distinct insight into pairing ionic mixture electrolytes with materials with confined porous characteristics and further propose that it is possible to control the charging process resulting in comprehensive enhancements in SC performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...