Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 16(804): eabl8266, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37751479

ABSTRACT

Virus-host interactions can reveal potentially effective and selective therapeutic targets for treating infection. Here, we performed an integrated analysis of the dynamics of virus replication and the host cell transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using human Caco-2 colon cancer cells as a model. Time-resolved RNA sequencing revealed that, upon infection, cells immediately transcriptionally activated genes associated with inflammatory pathways that mediate the antiviral response, which was followed by an increase in the expression of genes involved in ribosome and mitochondria function, thus suggesting rapid alterations in protein production and cellular energy supply. At later stages, between 24 and 48 hours after infection, the expression of genes involved in metabolic processes-in particular, those related to xenobiotic metabolism-was decreased. Mathematical modeling incorporating SARS-CoV-2 replication suggested that SARS-CoV-2 proteins inhibited the host antiviral response and that virus transcripts exceeded the translation capacity of the host cells. Targeting kinase-dependent pathways that exhibited increases in transcription in host cells was as effective as a virus-targeted inhibitor at repressing viral replication. Our findings in this model system delineate a sequence of SARS-CoV-2 virus-host interactions that may facilitate the identification of druggable host pathways to suppress infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Caco-2 Cells , SARS-CoV-2/genetics , Transcriptome , COVID-19/genetics , Epithelial Cells , Antiviral Agents
2.
Adv Sci (Weinh) ; 10(28): e2303496, 2023 10.
Article in English | MEDLINE | ID: mdl-37562980

ABSTRACT

Domain insertion engineering is a promising approach to recombine the functions of evolutionarily unrelated proteins. Insertion of light-switchable receptor domains into a selected effector protein, for instance, can yield allosteric effectors with light-dependent activity. However, the parameters that determine domain insertion tolerance and allostery are poorly understood. Here, an unbiased screen is used to systematically assess the domain insertion permissibility of several evolutionary unrelated proteins. Training machine learning models on the resulting data allow to dissect features informative for domain insertion tolerance and revealed sequence conservation statistics as the strongest indicators of suitable insertion sites. Finally, extending the experimental pipeline toward the identification of switchable hybrids results in opto-chemogenetic derivatives of the transcription factor AraC that function as single-protein Boolean logic gates. The study reveals determinants of domain insertion tolerance and yielded multimodally switchable proteins with unique functional properties.


Subject(s)
Transcription Factors , Allosteric Regulation
3.
Nucleic Acids Res ; 49(5): e29, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33330940

ABSTRACT

Optogenetic control of CRISPR-Cas9 systems has significantly improved our ability to perform genome perturbations in living cells with high precision in time and space. As new Cas orthologues with advantageous properties are rapidly being discovered and engineered, the need for straightforward strategies to control their activity via exogenous stimuli persists. The Cas9 from Neisseria meningitidis (Nme) is a particularly small and target-specific Cas9 orthologue, and thus of high interest for in vivo genome editing applications. Here, we report the first optogenetic tool to control NmeCas9 activity in mammalian cells via an engineered, light-dependent anti-CRISPR (Acr) protein. Building on our previous Acr engineering work, we created hybrids between the NmeCas9 inhibitor AcrIIC3 and the LOV2 blue light sensory domain from Avena sativa. Two AcrIIC3-LOV2 hybrids from our collection potently blocked NmeCas9 activity in the dark, while permitting robust genome editing at various endogenous loci upon blue light irradiation. Structural analysis revealed that, within these hybrids, the LOV2 domain is located in striking proximity to the Cas9 binding surface. Together, our work demonstrates optogenetic regulation of a type II-C CRISPR effector and might suggest a new route for the design of optogenetic Acrs.


Subject(s)
CRISPR-Associated Protein 9/antagonists & inhibitors , CRISPR-Associated Protein 9/chemistry , CRISPR-Cas Systems , Gene Editing/methods , Neisseria meningitidis/enzymology , Optogenetics/methods , Cell Line , HEK293 Cells , Humans , Light , Models, Molecular , Protein Engineering , Proteins/chemistry , Proteins/radiation effects
4.
Adv Biol (Weinh) ; 5(5): e2000181, 2021 05.
Article in English | MEDLINE | ID: mdl-33107225

ABSTRACT

Optogenetics harnesses natural photoreceptors to non-invasively control selected processes in cells with previously unmet spatiotemporal precision. Linking the activity of a protein of choice to the conformational state of a photosensor domain through allosteric coupling represents a powerful method for engineering light-responsive proteins. It enables the design of compact and highly potent single-component optogenetic systems with fast on- and off-switching kinetics. However, designing protein-photoreceptor chimeras, in which structural changes of the photoreceptor are effectively propagated to the fused effector protein, is a challenging engineering problem and often relies on trial and error. Here, recent advances in the design and application of optogenetic allosteric switches are reviewed. First, an overview of existing optogenetic tools based on inducible allostery is provided and their utility for cell biology applications is highlighted. Focusing on light-oxygen-voltage domains, a widely applied class of small blue light sensors, the available strategies for engineering light-dependent allostery are presented and their individual advantages and limitations are highlighted. Finally, high-throughput screening technologies based on comprehensive insertion libraries, which could accelerate the creation of stimulus-responsive receptor-protein chimeras for use in optogenetics and beyond, are discussed.


Subject(s)
Optogenetics , Photoreceptor Cells , Light , Protein Engineering , Proteins
5.
Methods Mol Biol ; 2173: 261-281, 2020.
Article in English | MEDLINE | ID: mdl-32651924

ABSTRACT

Since the breakthrough discoveries that CRISPR-Cas9 nucleases can be easily programmed and employed to induce targeted double-strand breaks in mammalian cells, the gene editing field has grown exponentially. Today, CRISPR technologies based on engineered class II CRISPR effectors facilitate targeted modification of genes and RNA transcripts. Moreover, catalytically impaired CRISPR-Cas variants can be employed as programmable DNA binding domains and used to recruit effector proteins, such as transcriptional regulators, epigenetic modifiers or base-modifying enzymes, to selected genomic loci. The juxtaposition of CRISPR and optogenetics enables spatiotemporally confined and highly dynamic genome perturbations in living cells and animals and holds unprecedented potential for biology and biomedicine.Here, we provide an overview of the state-of-the-art methods for light-control of CRISPR effectors. We will detail the plethora of exciting applications enabled by these systems, including spatially confined genome editing, timed activation of endogenous genes, as well as remote control of chromatin-chromatin interactions. Finally, we will discuss limitations of current optogenetic CRISPR tools and point out routes for future innovation in this emerging field.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Optogenetics/methods , Animals , Gene Editing/methods , Humans
6.
Nat Chem Biol ; 16(7): 725-730, 2020 07.
Article in English | MEDLINE | ID: mdl-32284602

ABSTRACT

Anti-CRISPR (Acr) proteins are powerful tools to control CRISPR-Cas technologies. However, the available Acr repertoire is limited to naturally occurring variants. Here, we applied structure-based design on AcrIIC1, a broad-spectrum CRISPR-Cas9 inhibitor, to improve its efficacy on different targets. We first show that inserting exogenous protein domains into a selected AcrIIC1 surface site dramatically enhances inhibition of Neisseria meningitidis (Nme)Cas9. Then, applying structure-guided design to the Cas9-binding surface, we converted AcrIIC1 into AcrIIC1X, a potent inhibitor of the Staphylococcus aureus (Sau)Cas9, an orthologue widely applied for in vivo genome editing. Finally, to demonstrate the utility of AcrIIC1X for genome engineering applications, we implemented a hepatocyte-specific SauCas9 ON-switch by placing AcrIIC1X expression under regulation of microRNA-122. Our work introduces designer Acrs as important biotechnological tools and provides an innovative strategy to safeguard CRISPR technologies.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing/methods , MicroRNAs/genetics , Protein Engineering/methods , Amino Acid Sequence , CRISPR-Associated Protein 9/metabolism , Cell Line, Tumor , Genome, Human , HEK293 Cells , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , MicroRNAs/metabolism , Models, Molecular , Mutagenesis, Insertional , Neisseria meningitidis/enzymology , Neisseria meningitidis/genetics , Plasmids/chemistry , Plasmids/metabolism , Protein Domains , Protein Structure, Secondary , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...