Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
FASEB J ; 38(3): e23447, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38329326

ABSTRACT

We aimed to analyze sex-related differences in galectin-1 (Gal-1), a ß-galactoside-binding lectin, in aortic stenosis (AS) and its association with the inflammatory and fibrocalcific progression of AS. Gal-1 was determined in serum and aortic valves (AVs) from control and AS donors by western blot and immunohistochemistry. Differences were validated by ELISA and qPCR in AS samples. In vitro experiments were conducted in primary cultured valve interstitial cells (VICs). Serum Gal-1 was not different neither between control and AS nor between men and women. There was no association between circulating and valvular Gal-1 levels. The expression of Gal-1 in stenotic AVs was higher in men than women, even after adjusting for confounding factors, and was associated with inflammation, oxidative stress, extracellular matrix remodeling, fibrosis, and osteogenesis. Gal-1 (LGALS1) mRNA was enhanced within fibrocalcific areas of stenotic AVs, especially in men. Secretion of Gal-1 was up-regulated over a time course of 2, 4, and 8 days in men's calcifying VICs, only peaking at day 4 in women's VICs. In vitro, Gal-1 was associated with similar mechanisms to those in our clinical cohort. ß-estradiol significantly up-regulated the activity of an LGALS1 promoter vector and the secretion of Gal-1, only in women's VICs. Supplementation with rGal-1 prevented the effects elicited by calcific challenge including the metabolic shift to glycolysis. In conclusion, Gal-1 is up-regulated in stenotic AVs and VICs from men in association with inflammation, oxidative stress, matrix remodeling, and osteogenesis. Estrogens can regulate Gal-1 expression with potential implications in post-menopause women. Exogenous rGal-1 can diminish calcific phenotypes in both women and men.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Galectin 1 , Female , Humans , Male , Aortic Valve Stenosis/metabolism , Cells, Cultured , Galectin 1/genetics , Galectin 1/metabolism , Inflammation/metabolism
2.
Cardiovasc Diabetol ; 22(1): 280, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848892

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) accelerates the progression of aortic stenosis (AS), but how their underlying molecular mechanisms interact is not clear. Moreover, whether DM contributes to clinically relevant sex-differences in AS is unknown. In this work we aim to characterize the sex-specific profile of major pathological mechanisms fundamental to aortic valve (AV) degeneration in AS patients with or without concomitant DM. METHODS: 283 patients with severe AS undergoing surgical valve replacement (27.6% DM, 59.4% men) were recruited. Expression of pathological markers related to AS were thoroughly assessed in AVs and valve interstitial cells (VICs) according to sex and presence of DM. Complementary in vitro experiments in VICs in the presence of high-glucose levels (25 mM) for 24, 48 and 72 h were performed. RESULTS: Oxidative stress and metabolic dysfunction markers were increased in AVs from diabetic AS patients compared to non-diabetic patients in both sexes. However, disbalanced oxidative stress and enhanced inflammation were more predominant in AVs from male AS diabetic patients. Osteogenic markers were exclusively increased in the AVs of diabetic women. Basal characterization of VICs confirmed that oxidative stress, inflammation, calcification, and metabolic alteration profiles were increased in diabetic VICs with sex-specific differences. VICs cultured in hyperglycemic-like conditions triggered inflammatory responses in men, whereas in women rapid and higher production of pro-osteogenic molecules. CONCLUSIONS: DM produces sex-specific pathological phenotypes in AV of AS patients. Importantly, women with diabetes are more prone to develop AV calcification. DM should be considered as a risk factor in AS especially in women.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Diabetes Mellitus , Humans , Male , Female , Aortic Valve Stenosis/surgery , Aortic Valve/surgery , Aortic Valve/metabolism , Calcinosis/genetics , Calcinosis/metabolism , Calcinosis/pathology , Diabetes Mellitus/metabolism , Inflammation/metabolism , Cells, Cultured
3.
Biol Sex Differ ; 14(1): 72, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875993

ABSTRACT

BACKGROUND: Aortic stenosis (AS) is characterized by inflammation, fibrosis, osteogenesis and angiogenesis. Men and women develop these mechanisms differently. Galectin-3 (Gal-3) is a pro-inflammatory and pro-osteogenic lectin in AS. In this work, we aim to analyse a potential sex-differential role of Gal-3 in AS. METHODS: 226 patients (61.50% men) with severe AS undergoing surgical aortic valve (AV) replacement were recruited. In AVs, Gal-3 expression and its relationship with inflammatory, osteogenic and angiogenic markers was assessed. Valve interstitial cells (VICs) were primary cultured to perform in vitro experiments. RESULTS: Proteomic analysis revealed that intracellular Gal-3 was over-expressed in VICs of male AS patients. Gal-3 secretion was also higher in men's VICs as compared to women's. In human AVs, Gal-3 protein levels were significantly higher in men, with stronger immunostaining in VICs with myofibroblastic phenotype and valve endothelial cells. Gal-3 levels in AVs were positively correlated with inflammatory markers in both sexes. Gal-3 expression was also positively correlated with osteogenic markers mainly in men AVs, and with angiogenic molecules only in this sex. In vitro, Gal-3 treatment induced expression of inflammatory, osteogenic and angiogenic markers in male's VICs, while it only upregulated inflammatory and osteogenic molecules in women-derived cells. Gal-3 blockade with pharmacological inhibitors (modified citrus pectin and G3P-01) prevented the upregulation of inflammatory, osteogenic and angiogenic molecules. CONCLUSIONS: Gal-3 plays a sex-differential role in the setting of AS, and it could be a new sex-specific therapeutic target controlling pathological features of AS in VICs.


Aortic stenosis (AS) is a condition that affects the aortic valves (AVs) of the heart and leads to death if untreated. Males and females show clear differences in the onset of AS, both clinically and in valve deterioration. In this study we identified galectin-3 (Gal-3) as a molecule involved in the development of AS alterations with different effects in men and women. We analyzed AVs of 226 patients (139 male and 87 female) with severe AS who underwent surgical AV replacement to study the association of Gal-3 with markers of mechanisms related to AS, such as inflammation, calcification and blood vessels formation. We performed experiments in valvular interstitial cells (VICs) to evaluate the impact of Gal-3 in these cells and its potential use as a therapeutic target. Our results showed that Gal-3 was more expressed in AVs and VICs of men over women. In AVs, Gal-3 levels were associated with inflammatory markers either in male and female, while they correlated with osteogenic markers mainly in men and with angiogenic only in male. The treatment of VICs with Gal-3 produced increased levels of inflammatory and osteogenic molecules by cells of both sexes, but of angiogenic markers only in male's. Pharmacological inhibition of Gal-3 prevented the increase of these pathological markers in VICs. Overall, our study indicates that Gal-3 is a molecule implicated in the setting of AS in a sex-differential way and its targeting may lead to a new sex-specific therapeutic option for AS treatment.


Subject(s)
Aortic Valve Stenosis , Galectin 3 , Female , Humans , Male , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Endothelial Cells/metabolism , Proteomics
4.
Rev. esp. cardiol. (Ed. impr.) ; 76(9): 679-689, Sept. 2023. tab, graf, ilus
Article in Spanish | IBECS | ID: ibc-224452

ABSTRACT

Introducción y objetivos: Los pacientes con estenosis aórtica presentan remodelado del ventrículo izquierdo (VI) y fibrosis miocárdica de sustitución (FMS). Se desconoce si sST2 se asocia con la FMS medida por resonancia magnética y con el sexo. Métodos: Se incluyó a 79 pacientes consecutivos (73,0 [68,0-78,0] años; 61% varones) con estenosis aórtica grave aislada tratados con sustitución valvular. Se identificaron y cuantificaron la FMS mediante realce tardío post-gadolinio (RTG) y se valoró el sST2 sérico. Resultados: La FMS se asoció con sST2 elevado, hipertrofia y dilatación del VI y menor fracción de eyección del VI. Todos los pacientes con disfunción del VI tenían FMS. sST2 ≥ 28,2 ng/ml se asoció con FMS y mayor hipertrofia del VI. La masa de RTG se correlacionó con el remodelado del VI y sST2. Los niveles de sST2 fueron mayores en pacientes con fibrosis intramiocárdica frente a subendocárdica. El análisis multivariante evidenció que solo la fracción de eyección y sST2 se asociaban con la FMS. Los varones presentaron mayores niveles de FMS y sST2. En varones la FMS correlacionó con mayor dilatación e hipertrofia ventricular, y con la masa de RTG. Conclusiones: El sST2 es un factor independiente de FMS en la estenosisi aórtica grave aislada. sST2 ≥ 28,2 ng/ml predice la FMS y se relaciona con mayor hipertrofia del VI. La expresión de sST2 y asociaciones clínicas deben ser sexo-específicas.(AU)


Introduction and objectives: Patients with aortic stenosis (AS) exhibit left ventricular (LV) remodeling and replacement myocardial fibrosis (RMF). Whether sST2 is associated with RMF measured by cardiac magnetic resonance and with sex remains unknown. Methods: We recruited 79 consecutive patients (73.0 [68.0-78.0] years; 61% men) with severe isolated AS underdoing valve replacement. RMF was identified and quantified by late gadolinium enhancement (LGE). Serum sST2 levels were determined. Results: RMF was associated with higher circulating sST2 levels, LV hypertrophy and dilation, and lower LV ejection fraction. All patients with LV dysfunction had RMF. Circulating levels of sST2 ≥ 28.8 ng/mL were associated with RMF and greater LV hypertrophy. LGE mass was correlated with LV remodeling and sST2. Of note, sST2 levels were also associated with the RMF pattern, being higher in midwall than in subendocardial fibrosis. Multivariate analyses showed that only LV ejection fraction and sST2 levels were associated with RMF. Moreover, men had higher levels of sST2 and RMF. RMF was associated with higher LV dilation and hypertrophy only in men and was correlated with LGE mass. Conclusions: SST2 was an independent factor for RMF in patients with severe isolated AS. The presence of RMF was predicted by sST2 ≥ 28.2 ng/mL, and was associated with greater LV hypertrophy. sST2 expression and clinical associations may be sex-specific.(AU)


Subject(s)
Humans , Male , Female , Aortic Valve Stenosis , Fibrosis , Aortic Valve , Echocardiography , Cardiology , Cardiovascular Diseases , Epidemiology, Descriptive , Retrospective Studies , Cross-Sectional Studies , Spain
5.
Article in English | MEDLINE | ID: mdl-36767947

ABSTRACT

BACKGROUND: Metabolic syndrome (MS) is a complex and prevalent disorder. Oxidative stress and inflammation might contribute to the progression of MS. Soluble ST2 (sST2) is an attractive and druggable molecule that sits at the interface between inflammation, oxidative stress and fibrosis. This study aims to analyze the relationship among sST2, oxidative stress, inflammation and echocardiographic parameters in MS patients. METHODS: Fifty-eight patients with MS were recruited and underwent physical, laboratory and transthoracic echocardiography examinations. Commercial ELISA and appropriate colorimetric assays were used to quantify serum levels of oxidative stress and inflammation markers and sST2. RESULTS: Circulating sST2 was increased in MS patients and was significantly correlated with the oxidative stress markers nitrotyrosine and 8-hydroxy-2'-deoxyguanosine as well as with peroxide levels. The inflammatory parameters interleukin-6, intercellular adhesion molecule-1 and myeloperoxidase were positively correlated with sST2. Noteworthy, sST2 was positively correlated with left ventricular mass, filling pressures and pulmonary arterial pressures. CONCLUSION: Circulating levels of sST2 are associated with oxidative stress and inflammation burden and may underlie the pathological remodeling and dysfunction of the heart in MS patients. Our results suggest that sST2 elevation precedes diastolic dysfunction, emerging as an attractive biotarget in MS.


Subject(s)
Metabolic Syndrome , Humans , Biomarkers , Inflammation , Interleukin-1 Receptor-Like 1 Protein , Oxidative Stress
6.
Rev Esp Cardiol (Engl Ed) ; 76(9): 679-689, 2023 Sep.
Article in English, Spanish | MEDLINE | ID: mdl-36565751

ABSTRACT

INTRODUCTION AND OBJECTIVES: Patients with aortic stenosis (AS) exhibit left ventricular (LV) remodeling and replacement myocardial fibrosis (RMF). Whether sST2 is associated with RMF measured by cardiac magnetic resonance and with sex remains unknown. METHODS: We recruited 79 consecutive patients (73.0 [68.0-78.0] years; 61% men) with severe isolated AS underdoing valve replacement. RMF was identified and quantified by late gadolinium enhancement (LGE). Serum sST2 levels were determined. RESULTS: RMF was associated with higher circulating sST2 levels, LV hypertrophy and dilation, and lower LV ejection fraction. All patients with LV dysfunction had RMF. Circulating levels of sST2 ≥ 28.8 ng/mL were associated with RMF and greater LV hypertrophy. LGE mass was correlated with LV remodeling and sST2. Of note, sST2 levels were also associated with the RMF pattern, being higher in midwall than in subendocardial fibrosis. Multivariate analyses showed that only LV ejection fraction and sST2 levels were associated with RMF. Moreover, men had higher levels of sST2 and RMF. RMF was associated with higher LV dilation and hypertrophy only in men and was correlated with LGE mass. CONCLUSIONS: SST2 was an independent factor for RMF in patients with severe isolated AS. The presence of RMF was predicted by sST2 ≥ 28.2 ng/mL, and was associated with greater LV hypertrophy. sST2 expression and clinical associations may be sex-specific.


Subject(s)
Aortic Valve Stenosis , Interleukin-1 Receptor-Like 1 Protein , Male , Female , Humans , Contrast Media , Gadolinium , Aortic Valve Stenosis/complications , Aortic Valve Stenosis/diagnosis , Aortic Valve Stenosis/surgery , Ventricular Function, Left , Fibrosis , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/complications , Ventricular Remodeling
7.
Biol Sex Differ ; 13(1): 71, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36510294

ABSTRACT

BACKGROUND: Accumulating evidence suggest the existence of sex-related differences in the pathogenesis of aortic stenosis (AS) with inflammation, oxidative stress, fibrosis and calcification being over-represented in men. Neutrophil gelatinase-associated lipocalin (NGAL) is expressed in a myriad of tissues and cell types, and it is associated with acute and chronic pathological processes comprising inflammation, fibrosis or calcification. Sex-dependent signatures have been evidenced for NGAL which expression has been associated predominantly in males to metabolic and cardiovascular disorders. We aimed to analyse sex-related differences of NGAL in AS and its role in the inflammatory and fibrocalcific progression of AS. METHODS AND RESULTS: 220 (60.45% men) patients with severe AS elective for surgical aortic valve (AV) replacement were recruited. Immunohistochemistry revealed higher expression of NGAL in calcific areas of AVs and that was validated by qPCR in in 65 (60% men) donors. Valve interstitial cells (VICs) were a source of NGAL in these samples. Proteome profiler analyses evidenced higher expression of NGAL in men compared to women, and that was further validated by ELISA. NGAL expression in the AV was correlated with inflammation, oxidative stress, and osteogenic markers, as well as calcium score. The expression of NGAL, both intracellular and secreted (sNGAL), was significantly deregulated only in calcifying male-derived VICs. Depletion of intracellular NGAL in calcifying male-derived VICs was associated with pro-inflammatory profiles, dysbalanced matrix remodelling and pro-osteogenic profiles. Conversely, exogenous NGAL mediated inflammatory and dysbalanced matrix remodelling in calcifying VICs, and all that was prevented by the pharmacological blockade of NGAL. CONCLUSIONS: Owing to the over-expression of NGAL, the AV from men may be endowed with higher expression of inflammatory, oxidative stress, matrix remodelling and osteogenic markers supporting the progression of calcific AS phenotypes. The expression of NGAL in the VIC emerges as a potential therapeutic checkpoint, with its effects being potentially reverted by the pharmacological blockade of extracellular NGAL.


Subject(s)
Aortic Valve Stenosis , Lipocalin-2 , Female , Humans , Male , Aortic Valve Stenosis/epidemiology , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Calcinosis/pathology , Cells, Cultured , Fibrosis , Lipocalin-2/genetics , Sex Factors
8.
Front Cardiovasc Med ; 9: 971802, 2022.
Article in English | MEDLINE | ID: mdl-36172587

ABSTRACT

Objective: We aim to analyze sex-related differences in angiogenesis and lymphangiogenesis in aortic valves (AVs) and valve interstitial cells (VICs) from aortic stenosis (AS) patients. Approach and Results: Totally 230 patients (59% men) with severe AS undergoing surgical valve replacement were recruited. The density of total neovessels was higher in AVs from men as compared to women. Both small and medium neovessels were more abundant in men's AVs. Accordingly, male AVs exhibited higher CD31 and VE-cadherin expressions. The levels of the pro-angiogenic markers, such as vascular endothelial growth factor (VEGF)-A, VEGF receptor (VEGFR)1, VEGFR2, insulin-like growth factor-binding protein-2 (IGFBP-2), interleukin (IL)-8, chemerin, and fibroblast growth factor (FGF)-7, were increased in AVs from men. Transforming growth factor-ß expression was higher in male AVs. The expression of antiangiogenic molecules thrombospondin (Tsp)-1, endostatin, and CD36 was upregulated in male AVs, although the levels of Tsp-2, IL-4, IL-12p70, and chondromodulin-1 were similar between both sexes. The number of lymphatic vessels and the expression of the lymphangiogenic markers Lyve-1 and D2-40 was higher in men's AV as well as VEGF-C, VEGF-D, and VEGFR3. Multivariate analyses adjusted for confounders further validated the sex-dependent expression of these targets. VICs isolated from men's AVs secreted higher amounts of the pro-angiogenic factors, VEGF-A, VEGFR1, IGFBP-2, and FGF-7, as well as the pro-lymphangiogenic factors, VEGF-C, VEGF-D, and VEGFR3, than women without changes in antiangiogenic markers. Conclusion: Our data show that aberrant angiogenic and lymphangiogenic cues are over-represented in male AVs. Importantly, the VIC is a relevant source of multiple morphogens involved in angiogenesis and lymphangiogenesis likely endowing the AV of men with the predominant calcific AS phenotypes.

9.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955575

ABSTRACT

Aortic stenosis (AS) is a fibrocalcific disease of the aortic valves (AVs). Sex-differences in AS pathophysiology have recently been described. High levels of fatty acid-binding protein 4 (FAPB4) in atherosclerotic plaques have been associated with increased local inflammation, endothelial dysfunction, and plaque vulnerability. FABP4 pharmacological blockade has been shown to be effective for the treatment of atherosclerosis by modulating metabolic and inflammatory pathways. We aimed to analyze the sex-specific expression of FABP4 in AS and its potential role as a therapeutic target. A total of 226 patients (61.5% men) with severe AS undergoing surgical AV replacement were recruited. The FABP4 levels were increased in the AVs of AS patients compared to the control subjects, showing greater expression in the fibrocalcific regions. Male AVs exhibited higher levels of FABP4 compared to females, correlating with markers of inflammation (IL-6, Rantes), apoptosis (Bax, caspase-3, Bcl-2), and calcification (IL-8, BMP-2 and BMP-4). VICs derived from AS patients showed the basal expression of FABP4 in vitro. Osteogenic media induced upregulation of intracellular and secreted FABP4 levels in male VICs after 7 days, along with increased levels of inflammatory, pro-apoptotic, and osteogenic markers. Treatment with BMS309403, a specific inhibitor of FABP4, prevented from all of these changes. Thus, we propose FABP4 as a new sex-specific pharmacological therapeutic target in AS.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Plaque, Atherosclerotic , Aortic Valve/pathology , Aortic Valve Stenosis/pathology , Biomarkers/metabolism , Calcinosis/pathology , Fatty Acid-Binding Proteins/metabolism , Female , Humans , Inflammation/pathology , Male , Plaque, Atherosclerotic/pathology
10.
Hypertension ; 79(8): 1724-1737, 2022 08.
Article in English | MEDLINE | ID: mdl-35549329

ABSTRACT

BACKGROUND: There are sex differences in the pathophysiology of aortic valve (AV) calcification in patients with aortic stenosis, although the molecular and cellular mechanisms have not been elucidated. Aldosterone (Aldo) promotes proteoglycan synthesis in valve interstitial cells (VICs) from mitral valves via the mineralocorticoid receptor (MR). We investigated the influence of sex in the role of Aldo/MR pathway in AV alterations in patients with aortic stenosis. METHODS AND RESULTS: MR was expressed by primary aortic VICs and in AVs from patients with aortic stenosis. MR expression positively correlated with VIC activation markers in AVs from both sexes. However, MR expression was positively associated with molecules involved in AV calcification only in AV from men. Aldo enhanced VIC activation markers in cells from men and women. Interestingly, Aldo increased the expression of calcification markers only in VICs isolated from men. In female VICs, Aldo enhanced fibrotic molecules. MR antagonism (spironolactone) blocked all the above effects. Cytokine arrays showed ICAM (intercellular adhesion molecule)-1 and osteopontin to be specifically increased by Aldo in male VICs. In AVs from men, MR expression positively associated with both ICAM-1 (intercellular adhesion molecule-1) and osteopontin. Only in female VICs, estradiol treatment blocked Aldo-induced VICs activation, inflammation, and fibrosis. CONCLUSIONS: These findings demonstrate that the Aldo/MR pathway could play a role in early stages of aortic stenosis by promoting VICs activation, fibrosis, and ulterior calcification. Importantly, Aldo/MR pathway is involved in fibrosis in women and in early AV calcification only in men. Accordingly, MR antagonism emerges as a new sex-specific pharmacological treatment to prevent AV alterations.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Receptors, Mineralocorticoid , Aldosterone/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/metabolism , Calcinosis , Cells, Cultured , Female , Fibrosis , Humans , Male , Osteopontin/metabolism , Receptors, Mineralocorticoid/metabolism , Sex Factors , Signal Transduction
11.
Front Cardiovasc Med ; 9: 818371, 2022.
Article in English | MEDLINE | ID: mdl-35282345

ABSTRACT

Objective: We aim to analyse sex-specific differences in aortic valves (AVs) and valve interstitial cells (VICs) from aortic stenosis (AS) patients. Approach and Results: 238 patients with severe AS undergoing surgical valve replacement were recruited. Two hundred and two AVs (39.1% women) were used for ex vivo analyses and 36 AVs (33.3% women) for in vitro experiments. AVs from men presented increased levels of the inflammatory molecules interleukin (IL)-1ß, IL-6, Rantes, and CD45. Oxidative stress (eNOS, myeloperoxidase, malondialdehyde and nitrotyrosine) was upregulated in male AVs. Concerning fibrosis, similar levels of collagen type I, decreased levels of collagen type III and enhanced fibronectin, active Lox-1 and syndecan-1 expressions were found in AVs from men compared with women. Extracellular matrix (ECM) remodeling was characterized by reduced metalloproteinase-1 and 9 expression and increased tissue inhibitor of metalloproteinase-2 expression in male AVs. Importantly, osteogenic markers (bone morphogenetic protein-9, Rank-L, osteopontin, periostin, osteocalcin and Sox-9) and apoptosis (Bax, Caspase 3, p53, and PARP1) were enhanced in AVs from men as compared to women. Isolated male VICs presented higher myofibroblast-like phenotype than female VICs. Male VICs exhibited increased inflammatory, oxidative stress, fibrotic, apoptosis and osteogenic differentiation markers. Conclusions: Our results suggest that the mechanisms driving the pathogenesis of AS could be different in men and women. Male AVs and isolated VICs presented more inflammation, oxidative stress, ECM remodeling and calcification as compared to those from women. A better knowledge of the pathophysiological pathways in AVs and VICs will allow the development of sex-specific options for the treatment of AS.

12.
Biomedicines ; 9(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34204890

ABSTRACT

BACKGROUND: Vascular endothelial cells activation and dysfunction mediate inflammation and abnormal coagulation in COVID-19 patients. Mineralocorticoid receptor (MR) signaling and its downstream target Galectin-3 (Gal-3) are known to mediate cardiovascular inflammation and might be involved in the pathogenesis of COVID-19 complications. Accordingly, we aimed to investigate the potential beneficial effects of MR antagonism and Gal-3 inhibition on the inflammatory response induced by SARS-CoV-2 Spike protein in human aortic endothelial cells (HAECs). METHODS: HAECs were treated with recombinant SARS-COV2 Spike (S) protein. MR antagonists (namely spironolactone and eplerenone) or the Gal-3 inhibitor G3P-01 were supplemented before and after S protein challenge. HAECs supernatants were assessed by ELISA or Western blotting. RESULTS: HAECs treated with recombinant S protein resulted in enhanced secretion of inflammatory molecules (interleukin-6, monocyte chemoattractant protein-1, interleukin-18, interleukin-27, and interferon-γ) as well as in the thrombosis marker plasminogen activator inhibitor (PAI)-1. This was prevented and reversed by both MR antagonists and G3P-01. CONCLUSIONS: These findings indicate that MR/Gal-3 pathway blockade could be a promising option to reduce endothelial inflammation in SARS-CoV-2 infection.

13.
Int J Mol Sci ; 22(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669101

ABSTRACT

Mitral valve disease (MVD) is a frequent cause of heart failure and death worldwide, but its etiopathogenesis is not fully understood. Interleukin (IL)-33 regulates inflammation and thrombosis in the vascular endothelium and may play a role in the atherosclerotic process, but its role in mitral valve has not been investigated. We aim to explore IL-33 as a possible inductor of myxomatous degeneration in human mitral valves. We enrolled 103 patients suffering from severe mitral regurgitation due to myxomatous degeneration undergoing mitral valve replacement. Immunohistochemistry of the resected leaflets showed IL-33 and ST2 expression in both valve interstitial cells (VICs) and valve endothelial cells (VECs). Positive correlations were found between the levels of IL-33 and molecules implicated in the development of myxomatous MVD, such as proteoglycans, extracellular matrix remodeling enzymes (matrix metalloproteinases and their tissue inhibitors), inflammatory and fibrotic markers. Stimulation of single cell cultures of VICs and VECs with recombinant human IL-33 induced the expression of activated VIC markers, endothelial-mesenchymal transition of VECs, proteoglycan synthesis, inflammatory molecules and extracellular matrix turnover. Our findings suggest that the IL-33/ST2 system may be involved in the development of myxomatous MVD by enhancing extracellular matrix remodeling.


Subject(s)
Heart Valve Diseases/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/metabolism , Mitral Valve/metabolism , Aged , Cells, Cultured , Endothelial Cells/metabolism , Extracellular Matrix/enzymology , Extracellular Matrix/metabolism , Female , Humans , Immunohistochemistry , Interleukin-33/pharmacology , Male , Matrix Metalloproteinase Inhibitors/metabolism , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Middle Aged , Mitral Valve/cytology , Mitral Valve/pathology , Observational Studies as Topic , Prospective Studies , Proteoglycans/biosynthesis , Proteoglycans/genetics , Proteoglycans/metabolism , Recombinant Proteins , Signal Transduction/drug effects , Signal Transduction/genetics , Single-Cell Analysis
14.
Int J Mol Sci ; 21(15)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731636

ABSTRACT

Mitral valve prolapse (MVP) patients develop myocardial fibrosis that is not solely explained by volume overload, but the pathophysiology has not been defined. Mineralocorticoid receptor antagonists (MRAs) improve cardiac function by decreasing cardiac fibrosis in other heart diseases. We examined the role of MRA in myocardial fibrosis associated with myxomatous degeneration of the mitral valve. Myocardial fibrosis has been analyzed in a mouse model of mitral valve myxomatous degeneration generated by pharmacological treatment with Nordexfenfluramine (NDF) in the presence of the MRA spironolactone. In vitro, adult human cardiac fibroblasts were treated with NDF and spironolactone. In an experimental mouse, MRA treatment reduced interstitial/perivascular fibrosis and collagen type I deposition. MRA administration blunted NDF-induced cardiac expression of vimentin and the profibrotic molecules galectin-3/cardiotrophin-1. In parallel, MRA blocked the increase in cardiac non-fibrillar proteins such as fibronectin, aggrecan, decorin, lumican and syndecan-4. The following effects are blocked by MRA: in vitro, in adult human cardiac fibroblasts, NDF-treatment-induced myofibroblast activation, collagen type I and proteoglycans secretion. Our findings demonstrate, for the first time, the contribution of the mineralocorticoid receptor (MR) to the development of myocardial fibrosis associated with mitral valve myxomatous degeneration. MRA could be a therapeutic approach to reduce myocardial fibrosis associated with MVP.


Subject(s)
Fibroblasts/metabolism , Mineralocorticoid Receptor Antagonists/pharmacology , Mitral Valve Prolapse/metabolism , Myocardium/metabolism , Receptors, Mineralocorticoid/metabolism , Animals , Disease Models, Animal , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation/drug effects , Humans , Male , Mice , Mitral Valve Prolapse/drug therapy , Mitral Valve Prolapse/pathology , Muscle Proteins/biosynthesis , Myocardium/pathology
15.
Cells ; 9(7)2020 07 10.
Article in English | MEDLINE | ID: mdl-32664340

ABSTRACT

Circulating levels of soluble interleukin 1 receptor-like 1 (sST2) are increased in heart failure and associated with poor outcome, likely because of the activation of inflammation and fibrosis. We investigated the pathogenic role of sST2 as an inductor of cardiac fibroblasts activation and collagen synthesis. The effects of sST2 on human cardiac fibroblasts was assessed using proteomics and immunodetection approaches to evidence the upregulation of neuropilin-1 (NRP-1), a regulator of the profibrotic transforming growth factor (TGF)-ß1. In parallel, sST2 increased fibroblast activation, collagen and fibrosis mediators. Pharmacological inhibition of nuclear factor-kappa B (NF-κB) restored NRP-1 levels and blocked profibrotic effects induced by sST2. In NRP-1 knockdown cells, sST2 failed to induce fibroblast activation and collagen synthesis. Exogenous NRP-1 enhanced cardiac fibroblast activation and collagen synthesis via NF-κB. In a pressure overload rat model, sST2 was elevated in association with cardiac fibrosis and was positively correlated with NRP-1 expression. Our study shows that sST2 induces human cardiac fibroblasts activation, as well as the synthesis of collagen and profibrotic molecules. These effects are mediated by NRP-1. The blockade of NF-κB restored NRP-1 expression, improving the profibrotic status induced by sST2. These results show a new pathogenic role for sST2 and its mediator, NRP-1, as cardiac fibroblast activators contributing to cardiac fibrosis.


Subject(s)
Collagen/metabolism , Fibroblasts/metabolism , Myocardium/cytology , Myocardium/metabolism , Neuropilin-1/metabolism , Receptors, Interleukin-1/metabolism , Animals , Blotting, Western , CRISPR-Cas Systems , Enzyme-Linked Immunosorbent Assay , Male , NF-kappa B/metabolism , Proteomics/methods , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
16.
Circ Res ; 127(3): e80-e93, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32329663

ABSTRACT

RATIONALE: Mitral valve prolapse (MVP) is one of the most common valvular disorders. However, the molecular and cellular mechanisms involved in fibromyxomatous changes in the mitral leaflet tissue have not been elucidated. Aldosterone (Aldo) promotes fibrosis in myocardium, and MR (mineralocorticoid receptor) antagonists (MRAs) improve cardiac function by decreasing cardiac fibrosis. OBJECTIVE: We investigated the role of the Aldo/MR in the fibromyxomatous modifications associated with MVP. METHODS AND RESULTS: Aldo enhanced valvular interstitial cell activation markers and induced endothelial-mesenchymal transition in valvular endothelial cells, resulting in increased proteoglycan secretion. MRA blocked all the above effects. Cytokine arrays showed CT-1 (cardiotrophin-1) to be a mediator of Aldo-induced valvular interstitial cell activation and proteoglycan secretion and CD (cluster of differentiation) 14 to be a mediator of Aldo-induced endothelial-mesenchymal transition and proteoglycan secretion in valvular endothelial cells. In an experimental mouse model of MVP generated by nordexfenfluramine administration, MRA treatment reduced mitral valve thickness and proteoglycan content. Endothelial-specific MR deletion prevented fibromyxomatous changes induced by nordexfenfluramine administration. Moreover, proteoglycan expression was slightly lower in the mitral valves of MVP patients treated with MRA. CONCLUSIONS: These findings demonstrate, for the first time, that the Aldo/MR pathway regulates the phenotypic, molecular, and histological changes of valvular interstitial cells and valvular endothelial cells associated with MVP development. MRA treatment appears to be a promising option to reduce fibromyxomatous alterations in MVP.


Subject(s)
Aldosterone/toxicity , Mitral Valve Prolapse/metabolism , Mitral Valve/drug effects , Receptors, Mineralocorticoid/agonists , Receptors, Mineralocorticoid/metabolism , Aged , Animals , Case-Control Studies , Cell Differentiation/drug effects , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Female , Fibrosis , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Mineralocorticoid Receptor Antagonists/pharmacology , Mitral Valve/metabolism , Mitral Valve/pathology , Mitral Valve Prolapse/chemically induced , Mitral Valve Prolapse/pathology , Mitral Valve Prolapse/prevention & control , Paracrine Communication , Phenotype , Prospective Studies , Proteoglycans/metabolism , Receptors, Mineralocorticoid/deficiency , Receptors, Mineralocorticoid/genetics , Signal Transduction
17.
Arterioscler Thromb Vasc Biol ; 40(5): 1370-1382, 2020 05.
Article in English | MEDLINE | ID: mdl-32188274

ABSTRACT

OBJECTIVE: Aortic valve (AV) calcification plays an important role in the progression of aortic stenosis (AS). MMP-10 (matrix metalloproteinase-10 or stromelysin-2) is involved in vascular calcification in atherosclerosis. We hypothesize that MMP-10 may play a pathophysiological role in calcific AS. Approach and Results: Blood samples (n=112 AS and n=349 controls) and AVs (n=88) from patients undergoing valve replacement were analyzed. Circulating MMP-10 was higher in patients with AS compared with controls (P<0.001) and correlated with TNFα (tumor necrosis factor α; rS=0.451; P<0.0001). MMP-10 was detected by immunochemistry in AVs from patients with AS colocalized with aortic valve interstitial cells markers α-SMA (α-smooth muscle actin) and vimentin and with calcification markers Runx2 (Runt-related transcription factor 2) and SRY (sex-determining region Y)-box 9. MMP-10 expression in AVs was further confirmed by RT-qPCR and western blot. Ex vivo, MMP-10 was elevated in the conditioned media of AVs from patients with AS and associated with interleukin-1ß (rS=0.5045, P<0.001) and BMP (bone morphogenetic protein)-2 (rS=0.5003, P<0.01). In vitro, recombinant human MMP-10 induced the overexpression of inflammatory, fibrotic, and osteogenic markers (interleukin-1ß, α-SMA, vimentin, collagen, BMP-4, Sox9, OPN [osteopontin], BMP-9, and Smad 1/5/8; P<0.05) and cell mineralization in aortic valve interstitial cells isolated from human AVs, in a mechanism involving Akt (protein kinase B) phosphorylation. These effects were prevented by TIMP-1 (tissue inhibitor of metalloproteinases type 1), a physiological MMP inhibitor, or specifically by an anti-MMP-10 antibody. CONCLUSIONS: MMP-10, which is overexpressed in aortic valve from patients with AS, seems to play a central role in calcification in AS through Akt phosphorylation. MMP-10 could be a new therapeutic target for delaying the progression of aortic valve calcification in AS.


Subject(s)
Aortic Valve Stenosis/enzymology , Aortic Valve/enzymology , Aortic Valve/pathology , Calcinosis/enzymology , Matrix Metalloproteinase 10/metabolism , Osteogenesis , Adult , Aged , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/pathology , Calcinosis/genetics , Calcinosis/pathology , Case-Control Studies , Cells, Cultured , Female , Fibrosis , Humans , Inflammation Mediators/metabolism , Male , Matrix Metalloproteinase 10/genetics , Middle Aged , Osteogenesis/genetics , Phosphorylation , Prospective Studies , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Up-Regulation
18.
Clin Sci (Lond) ; 133(14): 1537-1548, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31285364

ABSTRACT

Background: Soluble ST2 (interleukin 1 receptor-like 1) (sST2) is involved in inflammatory diseases and increased in heart failure (HF). We herein investigated sST2 effects on oxidative stress and inflammation in human cardiac fibroblasts and its pathological role in human aortic stenosis (AS).Methods and results: Using proteomics and immunodetection approaches, we have identified that sST2 down-regulated mitofusin-1 (MFN-1), a protein involved in mitochondrial fusion, in human cardiac fibroblasts. In parallel, sST2 increased nitrotyrosine, protein oxidation and peroxide production. Moreover, sST2 enhanced the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1ß and monocyte chemoattractant protein-1 (CCL-2). Pharmacological inhibition of transcriptional factor nuclear factor κB (NFκB) restored MFN-1 levels and improved oxidative status and inflammation in cardiac fibroblasts. Mito-Tempo, a mitochondria-specific superoxide scavenger, as well as Resveratrol, a general antioxidant, attenuated oxidative stress and inflammation induced by sST2. In myocardial biopsies from 26 AS patients, sST2 up-regulation paralleled a decrease in MFN-1. Cardiac sST2 inversely correlated with MFN-1 levels and positively associated with IL-6 and CCL-2 in myocardial biopsies from AS patients.Conclusions: sST2 affected mitochondrial fusion in human cardiac fibroblasts, increasing oxidative stress production and inflammatory markers secretion. The blockade of NFκB or mitochondrial reactive oxygen species restored MFN-1 expression, improving oxidative stress status and reducing inflammatory markers secretion. In human AS, cardiac sST2 levels associated with oxidative stress and inflammation. The present study reveals a new pathogenic pathway by which sST2 promotes oxidative stress and inflammation contributing to cardiac damage.


Subject(s)
Aortic Valve Stenosis/immunology , Fibroblasts/immunology , Interleukin-1 Receptor-Like 1 Protein/genetics , Oxidative Stress , Aged , Aged, 80 and over , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/pathology , Biomarkers , Cells, Cultured , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/immunology , Humans , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Male , Middle Aged , Mitochondrial Dynamics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/immunology , Myocardium/immunology , Myocardium/pathology
19.
Sci Rep ; 9(1): 9607, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31270370

ABSTRACT

Although optimal therapy for myocardial infarction includes reperfusion to restore blood flow to the ischemic region, ischemia/reperfusion (IR) also initiates an inflammatory response likely contributing to adverse left ventricular (LV) extracellular matrix (ECM) remodeling. Galectin-3 (Gal-3), a ß-galactoside-binding-lectin, promotes cardiac remodeling and dysfunction. Our aim is to investigate whether Gal-3 pharmacological inhibition using modified citrus pectin (MCP) improves cardiac remodeling and functional changes associated with IR. Wistar rats were treated with MCP from 1 day before until 8 days after IR (coronary artery ligation) injury. Invasive hemodynamics revealed that both LV contractility and LV compliance were impaired in IR rats. LV compliance was improved by MCP treatment 8 days after IR. Cardiac magnetic resonance imaging showed decreased LV perfusion in IR rats, which was improved with MCP. There was no difference in LV hypertrophy in MCP-treated compared to untreated IR rats. However, MCP treatment decreased the ischemic area as well as Gal-3 expression. Gal-3 blockade paralleled lower myocardial inflammation and reduced fibrosis. These novel data showing the benefits of MCP in compliance and ECM remodeling in IR reinforces previously published data showing the therapeutic potential of Gal-3 inhibition.


Subject(s)
Galectin 3/antagonists & inhibitors , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Pectins/pharmacology , Animals , Biomarkers , Blood Proteins , Disease Models, Animal , Galectin 3/genetics , Galectins , Gene Expression , Heart Failure/diagnosis , Heart Failure/drug therapy , Heart Failure/etiology , Heart Failure/metabolism , Heart Function Tests , Immunohistochemistry , Magnetic Resonance Imaging , Myocardial Infarction/diagnosis , Myocardial Infarction/drug therapy , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/etiology , Rats
20.
Front Immunol ; 9: 1033, 2018.
Article in English | MEDLINE | ID: mdl-29881378

ABSTRACT

Estradiol-based therapies predispose women to vaginal infections. Moreover, it has long been known that neutrophils are absent from the vaginal lumen during the ovulatory phase (high estradiol). However, the mechanisms that regulate neutrophil influx to the vagina remain unknown. We investigated the neutrophil transepithelial migration (TEM) into the vaginal lumen. We revealed that estradiol reduces the CD44 and CD47 epithelial expression in the vaginal ectocervix and fornix, which retain neutrophils at the apical epithelium through the estradiol receptor-alpha. In contrast, luteal progesterone increases epithelial expression of CD44 and CD47 to promote neutrophil migration into the vaginal lumen and Candida albicans destruction. Distinctive to vaginal mucosa, neutrophil infiltration is contingent to sex hormones to prevent sperm from neutrophil attack; although it may compromise immunity during ovulation. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil TEM.


Subject(s)
Candidiasis, Vulvovaginal/immunology , Estrogen Receptor alpha/genetics , Neutrophil Infiltration , Neutrophils/immunology , Transendothelial and Transepithelial Migration , Vagina/immunology , Animals , CD47 Antigen/genetics , CD47 Antigen/immunology , Candida albicans , Cells, Cultured , Cervix Uteri/immunology , Cervix Uteri/microbiology , Estradiol/pharmacology , Estrogen Receptor alpha/immunology , Female , Gonadal Steroid Hormones/pharmacology , Hyaluronan Receptors/genetics , Hyaluronan Receptors/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Progesterone/pharmacology , Vagina/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...