Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Article in English | MEDLINE | ID: mdl-37339889

ABSTRACT

Mutations in the complement factor I (CFI) gene have previously been identified as causes of recurrent CNS inflammation. We present a case of a 26-year-old man with 18 episodes of recurrent meningitis, who had a variant in CFI(c.859G>A,p.Gly287Arg) not previously associated with neurologic manifestations. He achieved remission with canakinumab, a human monoclonal antibody targeted at interleukin-1 beta.


Subject(s)
Complement Factor I , Meningitis, Aseptic , Male , Humans , Adult , Meningitis, Aseptic/drug therapy , Meningitis, Aseptic/complications , Antibodies, Monoclonal , Inflammation/complications , Mutation
2.
J Clin Virol Plus ; 3(1): 100135, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36644774

ABSTRACT

Objective: Lateral flow assays (LFA) are sensitive for detecting antibodies to SARS-CoV-2 proteins within weeks after infection. This study tested samples from immunocompetent adults, and those receiving treatments for chronic inflammatory diseases (CID), before and after mRNA SARS-CoV-2 vaccination. Methods: We compared results obtained with the COVIBLOCK Covid-19 LFA to those obtained by anti-spike (S) ELISA. Results: The LFA detected anti-S antibodies in 29 of 29 (100%) of the immunocompetent and 110 of 126 (87.3%) of the CID participants after vaccination. Semiquantitative LFA scores were statistically significantly lower in samples from immunosuppressed participants, and were significantly correlated with anti-S antibody levels measured by ELISA. Conclusions: This simple LFA test is a practical alternative to laboratory-based assays for detecting anti-S antibodies after infection or vaccination. This type of test may be most useful for testing people in outpatient or resource-limited settings.

3.
Arthritis Care Res (Hoboken) ; 75(8): 1849-1856, 2023 08.
Article in English | MEDLINE | ID: mdl-36479599

ABSTRACT

OBJECTIVE: Immunocompromised patients with chronic inflammatory disease (CID) may have experienced additional psychosocial burden during the COVID-19 pandemic due to their immunocompromised status. This study was undertaken to determine if vaccination would result in improved patient-reported outcomes longitudinally among individuals with CID undergoing SARS-CoV-2 vaccination regardless of baseline anxiety. METHODS: Data are from a cohort of individuals with CID from 2 sites who underwent SARS-CoV-2 vaccination. Participants completed 3 study visits before and after 2 messenger RNA vaccine doses in the initial vaccination series when clinical data were collected. Patient-reported outcomes were measured using the Patient-Reported Outcomes Measurement Information System 29-item Health Profile and expressed as T scores, with 2 groups stratified by high and low baseline anxiety. Mixed-effects models were used to examine longitudinal changes, adjusting for age, sex, and study site. RESULTS: A total of 72% of the cohort was female with a mean ± SD age of 48.1 ± 15.5 years. Overall, sleep disturbance improved following both doses of SARS-CoV-2 vaccinations, and anxiety decreased after the second dose. Physical function scores worsened but did not meet the minimally important difference threshold. When stratifying by baseline anxiety, improvement in anxiety, fatigue, and social participation were greater in the high anxiety group. Physical function worsened slightly in both groups, and sleep disturbance improved significantly in the high anxiety group. CONCLUSION: Sleep disturbance decreased in a significant and meaningful way in patients with CID upon vaccination. In patients with higher baseline anxiety, social participation increased, and anxiety, fatigue, and sleep disturbance decreased. Overall, results suggest that SARS-CoV-2 vaccination may improve mental health and well-being, particularly among those with greater anxiety.


Subject(s)
COVID-19 , Sleep Wake Disorders , Humans , Female , Adult , Middle Aged , COVID-19 Vaccines , SARS-CoV-2 , Pandemics , COVID-19/prevention & control , Vaccination , Sleep Wake Disorders/etiology , Chronic Disease , Fatigue , Sleep
5.
Nat Commun ; 13(1): 3671, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35760778

ABSTRACT

Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.


Subject(s)
Triple Negative Breast Neoplasms , Animals , B7-H1 Antigen/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immune Evasion , Immunotherapy , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/metabolism
6.
Science ; 376(6589): eabf1970, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389781

ABSTRACT

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Knowledge of circulating immune cell types and states associated with SLE remains incomplete. We profiled more than 1.2 million peripheral blood mononuclear cells (162 cases, 99 controls) with multiplexed single-cell RNA sequencing (mux-seq). Cases exhibited elevated expression of type 1 interferon-stimulated genes (ISGs) in monocytes, reduction of naïve CD4+ T cells that correlated with monocyte ISG expression, and expansion of repertoire-restricted cytotoxic GZMH+ CD8+ T cells. Cell type-specific expression features predicted case-control status and stratified patients into two molecular subtypes. We integrated dense genotyping data to map cell type-specific cis-expression quantitative trait loci and to link SLE-associated variants to cell type-specific expression. These results demonstrate mux-seq as a systematic approach to characterize cellular composition, identify transcriptional signatures, and annotate genetic variants associated with SLE.


Subject(s)
Interferon Type I , Lupus Erythematosus, Systemic , CD8-Positive T-Lymphocytes/metabolism , Case-Control Studies , Humans , Interferon Type I/metabolism , Leukocytes, Mononuclear , Lupus Erythematosus, Systemic/genetics , RNA-Seq , Transcription, Genetic
7.
Arthritis Care Res (Hoboken) ; 74(12): 1953-1960, 2022 12.
Article in English | MEDLINE | ID: mdl-35412029

ABSTRACT

OBJECTIVE: Little is known regarding the reactogenicity and related SARS-CoV-2 vaccine response in patients with chronic inflammatory disease (CID). Our objective was to characterize the adverse event profile of CID patients following SARS-CoV-2 vaccination and understand the relationship between reactogenicity and immunogenicity of SARS-CoV-2 vaccines. METHODS: CID patients and healthy controls eligible to receive messenger RNA (mRNA) SARS-CoV-2 vaccines participated in 3 study visits (pre-vaccine, after dose 1, and after dose 2) in which blood and clinical data were collected. Assessment of adverse events were solicited within 7 days of receiving each dose. Serum anti-SARS-CoV-2 spike IgG ± antibody titers were quantified following vaccination. Statistical analysis was performed utilizing mixed models and tobit regressions, with adjustment for covariates. RESULTS: The present study included 441 participants (322 CID patients and 119 control subjects). Compared to controls, CID patients reported greater symptom severity after dose 1 (P = 0.0001), including more myalgia and fatigue (P < 0.05). For immunogenicity, a higher symptom severity after dose 1 and a higher number of symptoms after dose 2 was associated with higher antibody titers (P ≤ 0.05). Each increase of 1 symptom was associated with a 15.1% increase in antibody titer. Symptom association was strongest with site pain after dose 1 (105%; P = 0.03) and fatigue after dose 2 (113%; P = 0.004). CONCLUSION: Patients with CID have a distinct reactogenicity profile following SARS-CoV-2 vaccination compared to controls. Furthermore, there is an association between increased reactogenicity and increased vaccine response. This finding may speak to the more variable immunogenicity in CID patients and may be an important indicator of vaccine response to the novel SARS-CoV-2 vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , RNA, Messenger , COVID-19/prevention & control , SARS-CoV-2 , Fatigue , Myalgia/etiology , Antibodies, Viral
8.
Front Immunol ; 13: 835760, 2022.
Article in English | MEDLINE | ID: mdl-35309349

ABSTRACT

Early diagnosis of psoriatic arthritis (PSA) is important for successful therapeutic intervention but currently remains challenging due, in part, to the scarcity of non-invasive biomarkers. In this study, we performed single cell profiling of transcriptome and cell surface protein expression to compare the peripheral blood immunocyte populations of individuals with PSA, individuals with cutaneous psoriasis (PSO) alone, and healthy individuals. We identified genes and proteins differentially expressed between PSA, PSO, and healthy subjects across 30 immune cell types and observed that some cell types, as well as specific phenotypic subsets of cells, differed in abundance between these cohorts. Cell type-specific gene and protein expression differences between PSA, PSO, and healthy groups, along with 200 previously published genetic risk factors for PSA, were further used to perform machine learning classification, with the best models achieving AUROC ≥ 0.87 when either classifying subjects among the three groups or specifically distinguishing PSA from PSO. Our findings thus expand the repertoire of gene, protein, and cellular biomarkers relevant to PSA and demonstrate the utility of machine learning-based diagnostics for this disease.


Subject(s)
Arthritis, Psoriatic , Psoriasis , Arthritis, Psoriatic/diagnosis , Arthritis, Psoriatic/genetics , Biomarkers , Epitopes , Humans , Machine Learning , Psoriasis/diagnosis , Psoriasis/genetics , Transcriptome
9.
J Immunol ; 208(5): 1155-1169, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35110421

ABSTRACT

CD8+ T cells are critical for the immune response to pathogens and tumors, and CD8+ T cell memory protects against repeat infections. In this study, we identify the activating transcription factor 7 interacting protein (ATF7ip) as a critical regulator of CD8+ T cell immune responses. Mice with a T cell-specific deletion of ATF7ip have a CD8+ T cell-intrinsic enhancement of Il7r expression and Il2 expression leading to enhanced effector and memory responses. Chromatin immunoprecipitation sequencing studies identified ATF7ip as a repressor of Il7r and Il2 gene expression through the deposition of the repressive histone mark H3K9me3 at the Il7r gene and Il2-Il21 intergenic region. Interestingly, ATF7ip targeted transposable elements for H3K9me3 deposition at both the IL7r locus and the Il2-Il21 intergenic region, indicating that ATF7ip silencing of transposable elements is important for regulating CD8+ T cell function. These results demonstrate a new epigenetic pathway by which IL-7R and IL-2 production are constrained in CD8+ T cells, and this may open up new avenues for modulating their production.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Interleukin-2/biosynthesis , Receptors, Interleukin-7/biosynthesis , Repressor Proteins/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Chromatin Immunoprecipitation , DNA Transposable Elements/genetics , Gene Deletion , Gene Silencing , Histones/genetics , Humans , Interleukin-2/metabolism , Listeria monocytogenes/immunology , Listeriosis/immunology , Listeriosis/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , Repressor Proteins/genetics
10.
Ann Intern Med ; 174(11): 1572-1585, 2021 11.
Article in English | MEDLINE | ID: mdl-34461029

ABSTRACT

BACKGROUND: Patients with chronic inflammatory disease (CID) treated with immunosuppressive medications have increased risk for severe COVID-19. Although mRNA-based SARS-CoV-2 vaccination provides protection in immunocompetent persons, immunogenicity in immunosuppressed patients with CID is unclear. OBJECTIVE: To determine the immunogenicity of mRNA-based SARS-CoV-2 vaccines in patients with CID. DESIGN: Prospective observational cohort study. SETTING: Two U.S. CID referral centers. PARTICIPANTS: Volunteer sample of adults with confirmed CID eligible for early COVID-19 vaccination, including hospital employees of any age and patients older than 65 years. Immunocompetent participants were recruited separately from hospital employees. All participants received 2 doses of mRNA vaccine against SARS-CoV-2 between 10 December 2020 and 20 March 2021. Participants were assessed within 2 weeks before vaccination and 20 days after final vaccination. MEASUREMENTS: Anti-SARS-CoV-2 spike (S) IgG+ binding in all participants, and neutralizing antibody titers and circulating S-specific plasmablasts in a subset to assess humoral response after vaccination. RESULTS: Most of the 133 participants with CID (88.7%) and all 53 immunocompetent participants developed antibodies in response to mRNA-based SARS-CoV-2 vaccination, although some with CID developed numerically lower titers of anti-S IgG. Anti-S IgG antibody titers after vaccination were lower in participants with CID receiving glucocorticoids (n = 17) than in those not receiving them; the geometric mean of anti-S IgG antibodies was 357 (95% CI, 96 to 1324) for participants receiving prednisone versus 2190 (CI, 1598 to 3002) for those not receiving it. Anti-S IgG antibody titers were also lower in those receiving B-cell depletion therapy (BCDT) (n = 10). Measures of immunogenicity differed numerically between those who were and those who were not receiving antimetabolites (n = 48), tumor necrosis factor inhibitors (n = 39), and Janus kinase inhibitors (n = 11); however, 95% CIs were wide and overlapped. Neutralization titers seemed generally consistent with anti-S IgG results. Results were not adjusted for differences in baseline clinical factors, including other immunosuppressant therapies. LIMITATIONS: Small sample that lacked demographic diversity, and residual confounding. CONCLUSION: Compared with nonusers, patients with CID treated with glucocorticoids and BCDT seem to have lower SARS-CoV-2 vaccine-induced antibody responses. These preliminary findings require confirmation in a larger study. PRIMARY FUNDING SOURCE: The Leona M. and Harry B. Helmsley Charitable Trust, Marcus Program in Precision Medicine Innovation, National Center for Advancing Translational Sciences, and National Institute of Arthritis and Musculoskeletal and Skin Diseases.

11.
medRxiv ; 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33851176

ABSTRACT

BACKGROUND: Individuals with chronic inflammatory diseases (CID) are frequently treated with immunosuppressive medications that can increase their risk of severe COVID-19. While novel mRNA-based SARS-CoV-2 vaccination platforms provide robust protection in immunocompetent individuals, the immunogenicity in CID patients on immunosuppression is not well established. Therefore, determining the effectiveness of SARS-CoV-2 vaccines in the setting of immunosuppression is essential to risk-stratify CID patients with impaired protection and provide clinical guidance regarding medication management. METHODS: We conducted a prospective assessment of mRNA-based vaccine immunogenicity in 133 adults with CIDs and 53 immunocompetent controls. Blood from participants over 18 years of age was collected before initial immunization and 1-2 weeks after the second immunization. Serum anti-SARS-CoV-2 spike (S) IgG + binding, neutralizing antibody titers, and circulating S-specific plasmablasts were quantified to assess the magnitude and quality of the humoral response following vaccination. RESULTS: Compared to immunocompetent controls, a three-fold reduction in anti-S IgG titers (P=0.009) and SARS-CoV-2 neutralization (p<0.0001) were observed in CID patients. B cell depletion and glucocorticoids exerted the strongest effect with a 36- and 10-fold reduction in humoral responses, respectively (p<0.0001). Janus kinase inhibitors and antimetabolites, including methotrexate, also blunted antibody titers in multivariate regression analysis (P<0.0001, P=0.0023, respectively). Other targeted therapies, such as TNF inhibitors, IL-12/23 inhibitors, and integrin inhibitors, had only modest impacts on antibody formation and neutralization. CONCLUSIONS: CID patients treated with immunosuppressive therapies exhibit impaired SARS-CoV-2 vaccine-induced immunity, with glucocorticoids and B cell depletion therapy more severely impeding optimal responses.

12.
Sci Signal ; 14(668)2021 02 02.
Article in English | MEDLINE | ID: mdl-33531381

ABSTRACT

The cytoplasmic kinase ZAP70 is critical for T cell antigen receptor (TCR) signaling. The R360P mutation in ZAP70 is responsible for an early-onset familial autoimmune syndrome. The structural location and biochemical signaling effects of the R360P mutation are consistent with weakening of the autoinhibitory conformation of ZAP70. Mice with a ZAP70 R360P mutation and polyclonal TCR repertoires exhibited relatively normal T cell development but showed evidence of increased signaling. In addition, the R360P mutation resulted in enhanced follicular helper T cell expansion after LCMV infection. To eliminate the possibility of a TCR repertoire shift, the OTI transgenic TCR was introduced into R360P mice, which resulted in enhanced T cell responses to weaker stimuli, including weak agonists and a self-peptide. These observations suggest that disruption of ZAP70 autoinhibition by the R360P mutation enables increased mature T cell sensitivity to self-antigens that would normally be ignored by wild-type T cells, a mechanism that may contribute to the break of tolerance in human patients with R360P mutation.


Subject(s)
Autoimmune Diseases/immunology , CD8-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , ZAP-70 Protein-Tyrosine Kinase/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , HEK293 Cells , Humans , Immune Tolerance , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation
13.
J Grad Med Educ ; 12(1): 92-97, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32089799

ABSTRACT

BACKGROUND: Medical innovation depends on translation, the process of applying clinical insights to solve biological problems, and vice versa, yet existing training programs provide few opportunities for physician-scientists to integrate their clinical and research training. OBJECTIVE: We developed and determined the feasibility and acceptability of a rotation on the Molecular Medicine Investigation Unit (MMIU), a novel program that engages trainees in the deliberate linkage of patient care and scientific inquiry to cultivate their interest and skills in translation. METHODS: Between July 2017 and January 2019, fourth-year medical students and internal medicine residents were offered a 4-week elective rotation on the MMIU. Supervised by 2 part-time faculty, trainees evaluated patients with unusual and perplexing presentations with the goal of generating hypotheses and a research plan to elucidate the underlying mechanisms of disease. We tracked the development of research hypotheses and resulting projects and surveyed participants about their satisfaction with the program. RESULTS: Over 18 months, 21 trainees (11 medical students and 10 residents) participated in the program and evaluated a total of 70 patients. Trainees generated a mechanistic hypothesis in 45 (64%) cases, and this resulted in a patient-centered research project in 38 (54%) cases. Trainees unanimously agreed that the program gave them an opportunity to integrate their clinical and research training, and many expressed that it reinforced their interests in translational research. CONCLUSIONS: With modest funding support, it was feasible to deliver authentic experiences of translational inquiry for medical students and internal medical residents, and these experiences were valued by trainees.


Subject(s)
Attitude of Health Personnel , Molecular Medicine/education , Physicians/psychology , Research/education , Students, Medical/psychology , Education, Medical, Undergraduate , Humans , Internship and Residency , Laboratory Personnel , Program Evaluation , Research Personnel , San Francisco
14.
Cell Rep ; 28(8): 2169-2181.e4, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31433990

ABSTRACT

Coordinate control of T cell proliferation, survival, and differentiation are essential for host protection from pathogens and cancer. Long-lived memory cells, whose precursors are formed during the initial immunological insult, provide protection from future encounters, and their generation is the goal of many vaccination strategies. microRNAs (miRNAs) are key nodes in regulatory networks that shape effective T cell responses through the fine-tuning of thousands of genes. Here, using compound conditional mutant mice to eliminate miR-15/16 family miRNAs in T cells, we show that miR-15/16 restrict T cell cycle, survival, and memory T cell differentiation. High throughput sequencing of RNA isolated by cross-linking immunoprecipitation of AGO2 combined with gene expression analysis in miR-15/16-deficient T cells indicates that these effects are mediated through the direct inhibition of an extensive network of target genes within pathways critical to cell cycle, survival, and memory.


Subject(s)
Cell Cycle , Cell Differentiation , Immunologic Memory , MicroRNAs/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Animals , Antigens/metabolism , Cell Cycle/genetics , Cell Differentiation/genetics , Cell Survival/genetics , Gene Expression Regulation , Gene Regulatory Networks , Genetic Loci , Lymphocytic choriomeningitis virus/physiology , Mice, Transgenic , MicroRNAs/genetics
15.
Cell Rep ; 21(9): 2500-2514, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29186687

ABSTRACT

T and B cell compartmentalization is a hallmark of secondary lymphoid organs and is maintained by chemokine-expressing stromal cells. How this stromal cell network initially develops and differentiates into two distinct subsets is poorly known, especially for the splenic white pulp (WP). Here, we show that perivascular fibroblast precursors are triggered by LTα1ß2 signals to expand, express CCL19/21, and then differentiate into two functionally distinct fibroblast subsets responsible for B and T cell clustering and WP compartmentalization. Failure to express or sense CCL19 leads to impaired T zone development, while lack of B cells or LTα1ß2 leads to an earlier and stronger impairment in WP development. We therefore propose that WP development proceeds in multiple steps, with LTα1ß2+ B cells acting as major inducer cells driving the expansion and gradual differentiation of perivascular fibroblasts into T and B zone organizer cells.


Subject(s)
Cell Differentiation/physiology , Fibroblasts/metabolism , Fibroblasts/physiology , Animals , Chemokine CCL19/metabolism , Chemokine CXCL13/metabolism , Chemokines, CXC/metabolism , Lymphotoxin-alpha/metabolism , Mice , Spleen/cytology , Spleen/metabolism
16.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1244-57, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27053649

ABSTRACT

We investigated whether corticotropin-releasing factor receptor 2 (CRF2) and its high-affinity agonist urocortin 1 (Ucn1) mediate sex-specific signaling and immune responses. Intrarectal trinitrobenzene sulfonic acid was used to induce experimental colitis in wild-type, CRF2 knockout (CRF2KO), and heterozygous (CRF2Ht) mice of both sexes. Changes in plasma extravasation, organ weight, survival, immune cell numbers, inflammatory cytokines, and the MAPK signaling pathway were assessed. Stored intestinal biopsies from patients with Crohn's disease (CD) and age- and sex-matched individuals without inflammatory bowel disease (IBD) were examined by immunofluorescence and confocal microscopy to characterize Ucn1 and CRF receptor expression. CRF2Ht mice of both sexes showed decreased survival during colitis compared with other genotypes. Ucn1 improved survival in male mice alone. Ucn1 restored colon length and spleen and adrenal weight and decreased colonic TNF-α, IL-6, and IL-1ß levels in male CRF2Ht mice alone. CRF2Ht mice of both sexes showed decreased phosphorylation of MAPK p38 and heat shock protein 27 (Hsp27) levels. Ucn1 restored p-Hsp27 levels in male CRF2Ht mice alone. Expression of the chaperone protein Hsp90 decreased during colitis, except in male CRF2Ht mice. Taken together, our data indicate that sex shows significant interaction with genotype and Ucn1 during colitis. Human duodenal and colonic biopsies revealed that sex-specific differences exist in levels of CRF receptors and Ucn1 expression in patients with CD compared with the matched non-IBD subjects. To conclude, Ucn1 mediates sex-specific immune and cellular signaling responses via CRF2, emphasizing the need for inclusion of females in preclinical studies.


Subject(s)
Colitis/immunology , Cytokines/immunology , Inflammation Mediators/immunology , Inflammation/immunology , Receptors, Corticotropin-Releasing Hormone/immunology , Urocortins/immunology , Animals , Female , Male , Mice , Sex Characteristics
17.
J Immunol ; 194(7): 2993-7, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25725108

ABSTRACT

Long-lasting Ab responses rely on the germinal center (GC), where B cells bearing high-affinity Ag receptors are selected from a randomly mutated pool to populate the memory and plasma cell compartments. Signaling downstream of the BCR is dampened in GC B cells, raising the possibility that Ag presentation and competition for T cell help, rather than Ag-dependent signaling per se, drive these critical selection events. In this study we use an in vivo reporter of BCR signaling, Nur77-eGFP, to demonstrate that although BCR signaling is reduced among GC B cells, a small population of cells exhibiting GC light zone phenotype (site of Ag and follicular helper T cell encounter) express much higher levels of GFP. We show that these cells exhibit somatic hypermutation, gene expression characteristic of signaling and selection, and undergo BCR signaling in vivo.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Animals , Antigens/immunology , Gene Expression , Gene Expression Profiling , Genes, Reporter , Immunophenotyping , Lymphocyte Activation/immunology , Mice , Mice, Transgenic , Phenotype , Plasma Cells/immunology , Plasma Cells/metabolism , Somatic Hypermutation, Immunoglobulin , Spleen/cytology , Spleen/immunology , Spleen/metabolism , Transcriptome
18.
Proc Natl Acad Sci U S A ; 111(35): E3679-88, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25136127

ABSTRACT

T-cell antigen receptor (TCR) signaling is essential for activation, proliferation, and effector function of T cells. Modulation of both intensity and duration of TCR signaling can regulate these events. However, it remains unclear how individual T cells integrate such signals over time to make critical cell-fate decisions. We have previously developed an engineered mutant allele of the critical T-cell kinase zeta-chain-associated protein kinase 70 kDa (Zap70) that is catalytically inhibited by a small molecule inhibitor, thereby blocking TCR signaling specifically and efficiently. We have also characterized a fluorescent reporter Nur77-eGFP transgenic mouse line in which T cells up-regulate GFP uniquely in response to TCR stimulation. The combination of these technologies unmasked a sharp TCR signaling threshold for commitment to cell division both in vitro and in vivo. Further, we demonstrate that this threshold is independent of both the magnitude of the TCR stimulus and Interleukin 2. Similarly, we identify a temporal threshold of TCR signaling that is required for commitment to proliferation, after which T cells are able to proliferate in a Zap70 kinase-independent manner. Taken together, our studies reveal a sharp threshold for the magnitude and duration of TCR signaling required for commitment of T cells to proliferation. These results have important implications for understanding T-cell responses to infection and optimizing strategies for immunomodulatory drug delivery.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Signal Transduction/immunology , Adoptive Transfer , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Female , Green Fluorescent Proteins/genetics , Interleukin-2/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/metabolism
19.
Nat Immunol ; 14(8): 840-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23812098

ABSTRACT

Follicular helper T cells (TFH cells) are the prototypic helper T cell subset specialized to enable B cells to form germinal centers (GCs) and produce high-affinity antibodies. We found that expression of microRNAs (miRNAs) by T cells was essential for TFH cell differentiation. More specifically, we show that after immunization of mice with protein, the miRNA cluster miR-17∼92 was critical for robust differentiation and function of TFH cells in a cell-intrinsic manner that occurred regardless of changes in proliferation. In a viral infection model, miR-17∼92 restrained the expression of genes 'inappropriate' to the TFH cell subset, including the direct miR-17∼92 target Rora. Removal of one Rora allele partially 'rescued' the inappropriate gene signature in miR-17∼92-deficient TFH cells. Our results identify the miR-17∼92 cluster as a critical regulator of T cell-dependent antibody responses, TFH cell differentiation and the fidelity of the TFH cell gene-expression program.


Subject(s)
Cell Differentiation/immunology , Gene Expression Regulation/immunology , MicroRNAs/immunology , Nuclear Receptor Subfamily 1, Group F, Member 1/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adaptive Immunity/immunology , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Flow Cytometry , Immunohistochemistry , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Statistics, Nonparametric , T-Lymphocytes, Helper-Inducer/cytology
20.
J Immunol ; 191(2): 810-8, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23761632

ABSTRACT

The importance for activation of innate immunity by pattern recognition receptors in forming an effective adaptive immune response is well known. TLRs were demonstrated to be critical for Ab responses to a variety of immunizations. In particular, recent evidence suggests that B cell-intrinsic TLR signaling is required for optimal responses to virus-like Ags, but the mechanisms by which TLR signaling impacts Ab responses during infection in vivo is unclear. In the current study, we demonstrate that deficiency of TLR7 in B cells alone is sufficient to significantly impact Ab responses in mice during chronic viral infection. This effect was independent of T follicular helper cells and resulted in a loss of plasma cells generated later, but not early, in the response. The defect in plasma cell formation appeared to be secondary to a qualitative effect of TLR signaling on the germinal center (GC) B cell response. GC B cells in TLR7-deficient mice proliferated to a lesser extent and had a greater proportion of cells with phenotypic characteristics of light zone, relative to dark zone, GC B cells. These results suggest that B cell-intrinsic TLR signaling in vivo likely affects plasma cell output by altered selection of Ag-specific B cells in the GC.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Membrane Glycoproteins/metabolism , Toll-Like Receptor 7/metabolism , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Cell Differentiation , Cell Proliferation , Immunoglobulin G/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Pattern Recognition/immunology , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology , Toll-Like Receptor 3/deficiency , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Toll-Like Receptor 7/deficiency , Toll-Like Receptor 7/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...