Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Elife ; 122024 Jan 26.
Article in English | MEDLINE | ID: mdl-38276879

ABSTRACT

Prostaglandin E2 (PGE2) is a key player in a plethora of physiological and pathological events. Nevertheless, little is known about the dynamics of PGE2 secretion from a single cell and its effect on the neighboring cells. Here, by observing confluent Madin-Darby canine kidney (MDCK) epithelial cells expressing fluorescent biosensors, we demonstrate that calcium transients in a single cell cause PGE2-mediated radial spread of PKA activation (RSPA) in neighboring cells. By in vivo imaging, RSPA was also observed in the basal layer of the mouse epidermis. Experiments with an optogenetic tool revealed a switch-like PGE2 discharge in response to the increasing cytoplasmic Ca2+ concentrations. The cell density of MDCK cells correlated with the frequencies of calcium transients and the following RSPA. The extracellular signal-regulated kinase (ERK) activation also enhanced the frequency of RSPA in MDCK and in vivo. Thus, the PGE2 discharge is regulated temporally by calcium transients and ERK activity.


Subject(s)
Calcium , Extracellular Signal-Regulated MAP Kinases , Mice , Animals , Dogs , Dinoprostone , Kidney , Phosphorylation
2.
Curr Biol ; 34(4): 683-696.e6, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38228149

ABSTRACT

Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Lung , Mice , Animals , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Feedback , Fibroblast Growth Factors/metabolism , Epithelium/metabolism , Morphogenesis/physiology , Mesoderm
3.
Cell Struct Funct ; 48(2): 241-249, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37813623

ABSTRACT

Calcium transients drive cells to discharge prostaglandin E2 (PGE2). We visualized PGE2-induced protein kinase A (PKA) activation and quantitated PGE2 secreted from a single cell by combining fluorescence microscopy and a simulation model. For this purpose, we first prepared PGE2-producer cells that express either an optogenetic or a chemogenetic calcium channel stimulator: OptoSTIM1 or Gq-DREADD, respectively. Second, we prepared reporter cells expressing the Gs-coupled PGE2 reporter EP2 and the PKA biosensor Booster-PKA, which is based on the principle of Förster resonance energy transfer (FRET). Upon the stimulation-induced triggering of calcium transients, a single producer cell discharges PGE2 to stimulate PKA in the surrounding reporter cells. Due to the flow of the medium, the PKA-activated area exhibited a comet-like smear when HeLa cells were used. In contrast, radial PKA activation was observed when confluent MDCK cells were used, indicating that PGE2 diffusion was restricted to the basolateral space. By fitting the radius of the PKA-activated area to a simulation model based on simple diffusion, we estimated that a single HeLa cell secretes 0.25 fmol PGE2 upon a single calcium transient to activate PKA in more than 1000 neighboring cells. This model also predicts that the PGE2 discharge rate is comparable to the diffusion rate. Thus, our method quantitatively envisions that a single calcium transient affects more than 1000 neighboring cells via PGE2.Key words: prostaglandin E2, imaging, intercellular communication, biosensor, quantification.


Subject(s)
Dinoprostone , Fluorescence Resonance Energy Transfer , Animals , Dogs , Humans , HeLa Cells , Dinoprostone/pharmacology , Dinoprostone/metabolism , Madin Darby Canine Kidney Cells
4.
Curr Opin Cell Biol ; 84: 102217, 2023 10.
Article in English | MEDLINE | ID: mdl-37574635

ABSTRACT

Extracellular signal-regulated kinase (ERK) has been recognized as a critical regulator in various physiological and pathological processes. Extensive research has elucidated the signaling mechanisms governing ERK activation via biochemical regulations with upstream molecules, particularly receptor tyrosine kinases (RTKs). However, recent advances have highlighted the role of mechanical forces in activating the RTK-ERK signaling pathways, thereby opening new avenues of research into mechanochemical interplay in multicellular tissues. Here, we review the force-induced ERK activation in cells and propose possible mechanosensing mechanisms underlying the mechanoresponsive ERK activation. We conclude that mechanical forces are not merely passive factors shaping cells and tissues but also active regulators of cellular signaling pathways controlling collective cell behaviors.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , MAP Kinase Signaling System , MAP Kinase Signaling System/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Signal Transduction/physiology , Receptor Protein-Tyrosine Kinases/metabolism
5.
J Cell Sci ; 136(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37519219

ABSTRACT

The ErbB-family receptors play pivotal roles in the proliferation, migration and survival of epithelial cells. Because our knowledge on the ErbB-family receptors has been largely obtained by the exogenous application of their ligands, it remains unknown to what extent each of the ErbB members contributes to these outputs. We here knocked out each ErbB gene, various combinations of ErbB genes or all ErbB genes in Madin-Darby canine kidney cells to delineate the contribution of each gene. ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) activation waves during collective cell migration were mediated primarily by ErbB1 and secondarily by the ErbB2 and ErbB3 heterodimer. Either ErbB1 or the ErbB2 and ErbB3 complex was sufficient for the G1/S progression. The saturation cell density was markedly reduced in cells deficient in all ErbB proteins, but not in cells retaining only ErbB2, which cannot bind to ligands. Thus, a ligand-independent ErbB2 activity is sufficient for preventing apoptosis at high cell density. In short, systematic knockout of ErbB-family genes has delineated the roles of each ErbB receptor.


Subject(s)
Receptor, ErbB-2 , Signal Transduction , Animals , Dogs , Ligands , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Phosphorylation , Genes, erbB , Cell Proliferation/genetics , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism
6.
J Mol Med (Berl) ; 101(7): 843-854, 2023 07.
Article in English | MEDLINE | ID: mdl-37204479

ABSTRACT

Rac small GTPases play important roles during embryonic development of the inner ear; however, little is known regarding their function in cochlear hair cells (HCs) after specification. Here, we revealed the localization and activation of Racs in cochlear HCs using GFP-tagged Rac plasmids and transgenic mice expressing a Rac1-fluorescence resonance energy transfer (FRET) biosensor. Furthermore, we employed Rac1-knockout (Rac1-KO, Atoh1-Cre;Rac1flox/flox) and Rac1 and Rac3 double KO (Rac1/Rac3-DKO, Atoh1-Cre;Rac1flox/flox;Rac3-/-) mice, under the control of the Atoh1 promoter. However, both Rac1-KO and Rac1/Rac3-DKO mice exhibited normal cochlear HC morphology at 13 weeks of age and normal hearing function at 24 weeks of age. No hearing vulnerability was observed in young adult (6-week-old) Rac1/Rac3-DKO mice even after intense noise exposure. Consistent with prior reports, the results from Atoh1-Cre;tdTomato mice confirmed that the Atoh1 promoter became functional only after embryonic day 14 when the sensory HC precursors exit the cell cycle. Taken together, these findings indicate that although Rac1 and Rac3 contribute to the early development of sensory epithelia in cochleae, as previously shown, they are dispensable for the maturation of cochlear HCs in the postmitotic state or for hearing maintenance following HC maturation. KEY MESSAGES: Mice with Rac1 and Rac3 deletion were generated after HC specification. Knockout mice exhibit normal cochlear hair cell morphology and hearing. Racs are dispensable for hair cells in the postmitotic state after specification. Racs are dispensable for hearing maintenance after HC maturation.


Subject(s)
rac GTP-Binding Proteins , rac1 GTP-Binding Protein , Animals , Mice , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , Mice, Knockout , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , Hair Cells, Auditory/metabolism , Mice, Transgenic
7.
Commun Biol ; 5(1): 1331, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471162

ABSTRACT

Necroptosis is a regulated form of cell death involved in various pathological conditions, including ischemic reperfusion injuries, virus infections, and drug-induced tissue injuries. However, it is not fully understood when and where necroptosis occurs in vivo. We previously generated a Forster resonance energy transfer (FRET) biosensor, termed SMART (the sensor for MLKL activation by RIPK3 based on FRET), which monitors conformational changes of MLKL along with progression of necroptosis in human and murine cell lines in vitro. Here, we generate transgenic (Tg) mice that express the SMART biosensor in various tissues. The FRET ratio is increased in necroptosis, but not apoptosis or pyroptosis, in primary cells. Moreover, the FRET signals are elevated in renal tubular cells of cisplatin-treated SMART Tg mice compared to untreated SMART Tg mice. Together, SMART Tg mice may provide a valuable tool for monitoring necroptosis in different types of cells in vitro and in vivo.


Subject(s)
Biosensing Techniques , Necroptosis , Humans , Mice , Animals , Fluorescence Resonance Energy Transfer , Mice, Transgenic , Protein Kinases/metabolism
8.
Dev Cell ; 57(19): 2290-2304.e7, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36174555

ABSTRACT

Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Hepatocyte Growth Factor , Animals , Cell Movement/physiology , Dogs , Epidermal Growth Factor/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Feedback , Mice
9.
Cell Rep ; 40(12): 111373, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130493

ABSTRACT

With age, senescence-associated (SA) CD4+ T cells that are refractory to T cell receptor (TCR) stimulation are increased along with spontaneous germinal center (Spt-GC) development prone to autoantibody production. We demonstrate that CD153 and its receptor CD30 are expressed in SA-T and Spt-GC B cells, respectively, and deficiency of either CD153 or CD30 results in the compromised increase of both cell types. CD153 engagement on SA-T cells upon TCR stimulation causes association of CD153 with the TCR/CD3 complex and restores TCR signaling, whereas CD30 engagement on GC B cells induces their expansion. Administration of an anti-CD153 antibody blocking the interaction with CD30 suppresses the increase in both SA-T and Spt-GC B cells with age and ameliorates lupus in lupus-prone mice. These results suggest that the molecular interaction of CD153 and CD30 plays a central role in the reciprocal activation of SA-T and Spt-GC B cells, leading to immunosenescent phenotypes and autoimmunity.


Subject(s)
CD30 Ligand/metabolism , Receptors, Antigen, T-Cell , T-Lymphocytes , Animals , CD3 Complex/metabolism , Germinal Center , Ki-1 Antigen/metabolism , Mice , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism
10.
Elife ; 112022 02 03.
Article in English | MEDLINE | ID: mdl-35113018

ABSTRACT

Natural killer (NK) cells lyse invading tumor cells to limit metastatic growth in the lung, but how some cancers evade this host protective mechanism to establish a growing lesion is unknown. Here, we have combined ultra-sensitive bioluminescence imaging with intravital two-photon microscopy involving genetically encoded biosensors to examine this question. NK cells eliminated disseminated tumor cells from the lung within 24 hr of arrival, but not thereafter. Intravital dynamic imaging revealed that 50% of NK-tumor cell encounters lead to tumor cell death in the first 4 hr after tumor cell arrival, but after 24 hr of arrival, nearly 100% of the interactions result in the survival of the tumor cell. During this 24-hr period, the probability of ERK activation in NK cells upon encountering the tumor cells was decreased from 68% to 8%, which correlated with the loss of the activating ligand CD155/PVR/Necl5 from the tumor cell surface. Thus, by quantitatively visualizing, the NK-tumor cell interaction at the early stage of metastasis, we have revealed the crucial parameters of NK cell immune surveillance in the lung.


Subject(s)
Cell Communication/immunology , Immunologic Surveillance , Intravital Microscopy/methods , Killer Cells, Natural/immunology , Neoplasm Metastasis/immunology , Neoplastic Cells, Circulating/pathology , Animals , Biosensing Techniques , Cell Line, Tumor , Female , Luminescent Proteins , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
11.
Endocrinology ; 163(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-35041746

ABSTRACT

Longitudinal bone growth is achieved by a tightly controlled process termed endochondral bone formation. C-type natriuretic peptide (CNP) stimulates endochondral bone formation through binding to its specific receptor, guanylyl cyclase (GC)-B. However, CNP/GC-B signaling dynamics in different stages of endochondral bone formation have not been fully clarified, especially in terms of the interaction between the cyclic guanine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) pathways. Here, we demonstrated that CNP activates the cAMP/protein kinase A (PKA) pathway and that this activation contributed to the elongation of the hypertrophic zone in the growth plate. Cells of the chondrogenic line ATDC5 were transfected with Förster resonance energy transfer (FRET)-based cGMP and PKA biosensors. Dual-FRET imaging revealed that CNP increased intracellular cGMP levels and PKA activities in chondrocytes. Further, CNP-induced PKA activation was enhanced following differentiation of ATDC5 cells. Live imaging of the fetal growth plate of transgenic mice, expressing a FRET biosensor for PKA, PKAchu mice, showed that CNP predominantly activates the PKA in the hypertrophic chondrocytes. Additionally, histological analysis of the growth plate of PKAchu mice demonstrated that CNP increased the length of the growth plate, but coadministration of a PKA inhibitor, H89, inhibited the growth-promoting effect of CNP only in the hypertrophic zone. In summary, we revealed that CNP-induced cGMP elevation activated the cAMP/PKA pathway, and clarified that this PKA activation contributed to the bone growth-promoting effect of CNP in hypertrophic chondrocytes. These results provide insights regarding the cross-talk between cGMP and cAMP signaling in endochondral bone formation and in the physiological role of the CNP/GC-B system.


Subject(s)
Chondrocytes/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Natriuretic Peptide, C-Type/pharmacology , Osteogenesis/physiology , Animals , Cell Differentiation , Cell Line , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic GMP/metabolism , Enzyme Activation/drug effects , Fluorescence Resonance Energy Transfer , Growth Plate/growth & development , Mice , Mice, Transgenic , Osteogenesis/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology
12.
Life Sci Alliance ; 5(1)2022 01.
Article in English | MEDLINE | ID: mdl-34667080

ABSTRACT

Epidermal growth factor receptor (EGFR) plays a pivotal role in collective cell migration by mediating cell-to-cell propagation of extracellular signal-regulated kinase (ERK) activation. Here, we aimed to determine which EGFR ligands mediate the ERK activation waves. We found that epidermal growth factor (EGF)-deficient cells exhibited lower basal ERK activity than the cells deficient in heparin-binding EGF (HBEGF), transforming growth factor alpha (TGFα) or epiregulin (EREG), but all cell lines deficient in a single EGFR ligand retained the ERK activation waves. Surprisingly, ERK activation waves were markedly suppressed, albeit incompletely, only when all four EGFR ligands were knocked out. Re-expression of the EGFR ligands revealed that all but HBEGF could restore the ERK activation waves. Aiming at complete elimination of the ERK activation waves, we further attempted to knockout NRG1, a ligand for ErbB3 and ErbB4, and found that NRG1-deficiency induced growth arrest in the absence of all four EGFR ligand genes. Collectively, these results showed that EGFR ligands exhibit remarkable redundancy in the propagation of ERK activation waves during collective cell migration.


Subject(s)
Cell Movement , Extracellular Signal-Regulated MAP Kinases/metabolism , Animals , CDC2 Protein Kinase/metabolism , Cell Line , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Gene Expression , Gene Knockdown Techniques , Humans , Ligands , Mutation , Protein Binding , RNA, Messenger , Single-Cell Analysis
13.
R Soc Open Sci ; 8(12): 211024, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34909216

ABSTRACT

The bending of epithelial tubes is a fundamental process in organ morphogenesis, driven by various multicellular behaviours. The cochlea in the mammalian inner ear is a representative example of spiral tissue architecture where the continuous bending of the duct is a fundamental component of its morphogenetic process. Although the cochlear duct morphogenesis has been studied by genetic approaches extensively, it is still unclear how the cochlear duct morphology is physically formed. Here, we report that nuclear behaviour changes are associated with the curvature of the pseudostratified epithelium during murine cochlear development. Two-photon live-cell imaging reveals that the nuclei shuttle between the luminal and basal edges of the cell is in phase with cell-cycle progression, known as interkinetic nuclear migration, in the flat region of the pseudostratified epithelium. However, the nuclei become stationary on the luminal side following mitosis in the curved region. Mathematical modelling together with perturbation experiments shows that this nuclear stalling facilitates luminal-basal differential growth within the epithelium, suggesting that the nuclear stalling would contribute to the bending of the pseudostratified epithelium during the cochlear duct development. The findings suggest a possible scenario of differential growth which sculpts the tissue shape, driven by collective nuclear dynamics.

14.
Cell Struct Funct ; 46(2): 103-111, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34744115

ABSTRACT

IFN-γ secreted from immune cells exerts pleiotropic effects on tumor cells, including induction of immune checkpoint and antigen presentation, growth inhibition, and apoptosis induction. We combined a dual promoter system with an IFN-γ signaling responsive promoter to generate a reporter named the interferon sensing probe (ISP), which quantitates the response to IFN-γ by means of fluorescence and bioluminescence. The integration site effect of the transgene is compensated for by the PGK promoter-driven expression of a fluorescent protein. Among five potential IFN-γ-responsive elements, we found that the interferon γ-activated sequence (GAS) exhibited the best performance. When ISP-GAS was introduced into four cell lines and subjected to IFN-γ stimulation, dose-dependency was observed with an EC50 ranging from 0.2 to 0.9 ng/mL, indicating that ISP-GAS can be generally used as a sensitive biosensor of IFN-γ response. In a syngeneic transplantation model, the ISP-GAS-expressing cancer cells exhibited bioluminescence and fluorescence signals in an IFN-γ receptor-dependent manner. Thus, ISP-GAS could be used to quantitatively monitor the IFN-γ response both in vitro and in vivo.Key words: in vivo imaging, tumor microenvironment, interferon-gamma, dual promoter system.


Subject(s)
Interferon-gamma , Transcription, Genetic , Interferon-gamma/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger , Signal Transduction
15.
FASEB J ; 35(9): e21880, 2021 09.
Article in English | MEDLINE | ID: mdl-34449091

ABSTRACT

In vertebrates, retinal rod and cone photoreceptor cells rely significantly on glycolysis. Lactate released from photoreceptor cells fuels neighboring retinal pigment epithelium cells and Müller glial cells through oxidative phosphorylation. To understand this highly heterogeneous metabolic environment around photoreceptor cells, single-cell analysis is needed. Here, we visualized cellular AMP-activated protein kinase (AMPK) activity and ATP levels in the retina by two-photon microscopy. Transgenic mice expressing a hyBRET-AMPK biosensor were used for measuring the AMPK activity. GO-ATeam2 transgenic mice were used for measuring the ATP level. Temporal metabolic responses were successfully detected in the live retinal explants upon drug perfusion. A glycolysis inhibitor, 2-deoxy-d-glucose (2-DG), activated AMPK and reduced ATP. These effects were clearly stronger in rods than in cones. Notably, rod AMPK and ATP started to recover at 30 min from the onset of 2-DG perfusion. Consistent with these findings, ex vivo electroretinogram recordings showed a transient slowdown in rod dim flash responses during a 60-min 2-DG perfusion, whereas cone responses were not affected. Based on these results, we propose that cones surrounded by highly glycolytic rods become less dependent on glycolysis, and rods also become less dependent on glycolysis within 60 min upon the glycolysis inhibition.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Glycolysis/physiology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , Ependymoglial Cells/metabolism , Light , Mice , Mice, Inbred C57BL , Oxidative Phosphorylation , Photons , Retina/metabolism
16.
Cancer Res ; 81(15): 4124-4132, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34035084

ABSTRACT

Prostaglandin E2 (PGE2) promotes tumor progression through evasion of antitumor immunity. In stark contrast to cyclooxygenase-dependent production of PGE2, little is known whether PGE2 secretion is regulated within tumor tissues. Here, we show that VEGF-dependent release of thromboxane A2 (TXA2) triggers Ca2+ transients in tumor cells, culminating in PGE2 secretion and subsequent immune evasion in the early stages of tumorigenesis. Ca2+ transients caused cPLA2 activation and triggered the arachidonic acid cascade. Ca2+ transients were monitored as the surrogate marker of PGE2 secretion. Intravital imaging of BrafV600E mouse melanoma cells revealed that the proportion of cells exhibiting Ca2+ transients is markedly higher in vivo than in vitro. The TXA2 receptor was indispensable for the Ca2+ transients in vivo, high intratumoral PGE2 concentration, and evasion of antitumor immunity. Notably, treatment with a VEGF receptor antagonist and an anti-VEGF antibody rapidly suppressed Ca2+ transients and reduced TXA2 and PGE2 concentrations in tumor tissues. These results identify the VEGF-TXA2 axis as a critical promoter of PGE2-dependent tumor immune evasion, providing a molecular basis underlying the immunomodulatory effect of anti-VEGF therapies. SIGNIFICANCE: This study identifies the VEGF-TXA2 axis as a potentially targetable regulator of PGE2 secretion, which provides novel strategies for prevention and treatment of multiple types of malignancies.


Subject(s)
Dinoprostone/immunology , Immune Evasion/immunology , Intravital Microscopy/methods , Vascular Endothelial Growth Factor A/immunology , Animals , Humans , Mice , Mice, Nude
17.
Elife ; 102021 03 05.
Article in English | MEDLINE | ID: mdl-33667159

ABSTRACT

A notable example of spiral architecture in organs is the mammalian cochlear duct, where the morphology is critical for hearing function. Genetic studies have revealed necessary signaling molecules, but it remains unclear how cellular dynamics generate elongating, bending, and coiling of the cochlear duct. Here, we show that extracellular signal-regulated kinase (ERK) activation waves control collective cell migration during the murine cochlear duct development using deep tissue live-cell imaging, Förster resonance energy transfer (FRET)-based quantitation, and mathematical modeling. Long-term FRET imaging reveals that helical ERK activation propagates from the apex duct tip concomitant with the reverse multicellular flow on the lateral side of the developing cochlear duct, resulting in advection-based duct elongation. Moreover, model simulations, together with experiments, explain that the oscillatory wave trains of ERK activity and the cell flow are generated by mechanochemical feedback. Our findings propose a regulatory mechanism to coordinate the multicellular behaviors underlying the duct elongation during development.


Subject(s)
Cell Movement , Cochlear Duct/embryology , MAP Kinase Signaling System , Animals , Embryo, Mammalian , Fluorescence Resonance Energy Transfer , Mice, Inbred ICR , Mice, Transgenic , Models, Theoretical , Morphogenesis
18.
Am J Pathol ; 191(1): 194-203, 2021 01.
Article in English | MEDLINE | ID: mdl-33069718

ABSTRACT

Contraction of vascular smooth muscle is regulated primarily by calcium concentration and secondarily by ROCK activity within the cells. In contrast to the wealth of information regarding regulation of calcium concentration, little is known about the spatiotemporal regulation of ROCK activity in live blood vessels. Here, we report ROCK activation in subcutaneous arterioles in a transgenic mouse line that expresses a genetically encoded ROCK biosensor based on the principle of FÓ§rster resonance energy transfer by two-photon excitation in vivo imaging. Rapid vasospasm was induced upon laser ablation of arterioles, concomitant with a transient increase in calcium concentration in arteriolar smooth muscles. Unlike the increase in calcium concentration, vasoconstriction and ROCK activation continued for several minutes after irradiation. Both the ROCK inhibitor, fasudil, and the ganglionic nicotinic acetylcholine receptor blocker, hexamethonium, inhibited laser-induced ROCK activation and reduced the duration of vasospasm at the segments distant from the irradiated point. These observations suggest that vasoconstriction is initially triggered by a rapid surge of cytoplasmic calcium and then maintained by sympathetic nerve-mediated ROCK activation.


Subject(s)
Muscle, Smooth, Vascular/enzymology , Vasoconstriction/physiology , rho-Associated Kinases/metabolism , Animals , Autonomic Nervous System/physiology , Calcium Signaling/physiology , Fluorescence Resonance Energy Transfer , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/innervation
19.
Front Cell Dev Biol ; 8: 585640, 2020.
Article in English | MEDLINE | ID: mdl-33195234

ABSTRACT

Tracheal cartilage provides architectural integrity to the respiratory airway, and defects in this structure during embryonic development cause severe congenital anomalies. Previous genetic studies have revealed genes that are critical for the development of tracheal cartilage. However, it is still unclear how crosstalk between these proteins regulates tracheal cartilage formation. Here we show a core regulatory network underlying murine tracheal chondrogenesis from embryonic day (E) 12.5 to E15.5, by combining volumetric imaging of fluorescence reporters, inhibitor assays, and mathematical modeling. We focused on SRY-box transcription factor 9 (Sox9) and extracellular signal-regulated kinase (ERK) in the tracheal mesenchyme, and observed a synchronous, inverted U-shaped temporal change in both Sox9 expression and ERK activity with a peak at E14.5, whereas the expression level of downstream cartilage matrix genes, such as collagen II alpha 1 (Col2a1) and aggrecan (Agc1), monotonically increased. Inhibitor assays revealed that the ERK signaling pathway functions as an inhibitory regulator of tracheal cartilage differentiation during this period. These results suggest that expression of the cartilage matrix genes is controlled by an incoherent feedforward loop via Sox9 and ERK, which is supported by a mathematical model. Furthermore, the modeling analysis suggests that a Sox9-ERK incoherent feedforward regulation augments the robustness against the variation of upstream factors. The present study provides a better understanding of the regulatory network underlying the tracheal development and will be helpful for efficient induction of tracheal organoids.

20.
Cell Cycle ; 19(22): 3167-3181, 2020 11.
Article in English | MEDLINE | ID: mdl-33131406

ABSTRACT

During muscle regeneration, extracellular signal-regulated kinase (ERK) promotes both proliferation and migration. However, the relationship between proliferation and migration is poorly understood in this context. To elucidate this complex relationship on a physiological level, we established an intravital imaging system for measuring ERK activity, migration speed, and cell-cycle phases in mouse muscle satellite cell-derived myogenic cells. We found that in vivo, ERK is maximally activated in myogenic cells two days after injury, and this is then followed by increases in cell number and motility. With limited effects of ERK activity on migration on an acute timescale, we hypothesized that ERK increases migration speed in the later phase by promoting cell-cycle progression. Our cell-cycle analysis further revealed that in myogenic cells, ERK activity is critical for G1/S transition, and cells migrate more rapidly in S/G2 phase 3 days after injury. Finally, migration speed of myogenic cells was suppressed after CDK1/2-but not CDK1-inhibitor treatment, demonstrating a critical role of CDK2 in myogenic cell migration. Overall, our study demonstrates that in myogenic cells, the ERK-CDK2 axis promotes not only G1/S transition but also migration, thus providing a novel mechanism for efficient muscle regeneration.


Subject(s)
Cell Cycle/genetics , Cell Movement/genetics , Intravital Microscopy/methods , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Regeneration/genetics , Satellite Cells, Skeletal Muscle/metabolism , Animals , Cardiotoxins/adverse effects , Cell Line , Cell Proliferation/genetics , Cyclin-Dependent Kinase 2/metabolism , Epithelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Transgenic , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/injuries , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...