Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8475, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123550

ABSTRACT

Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. At the onset of Xenopus neural tube folding, we observed alternation of apically constricted and apically expanded cells. This apical domain heterogeneity was accompanied by biased cell orientation along the anteroposterior axis, especially at neural plate hinges, and required planar cell polarity signaling. Vertex models suggested that dispersed isotropically constricting cells can cause the elongation of adjacent cells. Consistently, in ectoderm, cell-autonomous apical constriction was accompanied by neighbor expansion. Thus, a subset of isotropically constricting cells may initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the body axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that apical domain changes reflect planar polarity-dependent mechanical forces operating during neural folding.


Subject(s)
Neural Plate , Neural Tube , Nervous System , Ectoderm , Morphogenesis
2.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808688

ABSTRACT

Myocardin-related transcription factors (Mrtfa and Mrtfb), also known as megakaryoblastic leukemia proteins (Mkl1/MAL and Mkl2), associate with serum response factor (Srf) to regulate transcription in response to actin dynamics, however, the functions of Mrtfs in early vertebrate embryos remain largely unknown. Here we document the requirement of Mrtfs for blastopore closure at gastrulation and neural plate folding in Xenopus early embryos. Both stimulation and inhibition of Mrtf activity caused similar gross morphological phenotypes, yet the effects on F-actin distribution and cell behavior were different. Suppressing Mrtf-dependent transcription reduced overall F-actin levels and inhibited apical constriction during gastrulation and neurulation. By contrast, constitutively active Mrtf caused tricellular junction remodeling and induced apical constriction in superficial ectoderm. The underlying mechanism appeared distinct from the one utilized by known apical constriction inducers. We propose that the regulation of apical constriction is among the primary cellular responses to Mrtf. Our findings highlight a dedicated role of specific transcription factors, Mrtfs, in early morphogenetic processes.

3.
Front Immunol ; 14: 1179007, 2023.
Article in English | MEDLINE | ID: mdl-37143646

ABSTRACT

Periodontal disease is an infectious disease that affects many people worldwide. Disease progression destroys the alveolar bone and causes tooth loss. We have previously shown that alymphoplasia (aly/aly) mice harboring a loss-of-function mutation in the map3k14 gene, which is involved in p100 to p52 processing of the alternative NF-κB pathway, exhibited mild osteopetrosis due to decreased number of osteoclasts, suggesting the alternative NF-κB pathway as a potential drug target for the amelioration of bone disease. In the present study, wild-type (WT) and aly/aly mice were subjected to silk ligation to establish a periodontitis model. Alveolar bone resorption was suppressed in aly/aly mice by decreased numbers of osteoclasts in the alveolar bone in comparison to WT mice. Furthermore, the expression of receptor activator of NF-κB ligand (RANKL) and TNFα (cytokines involved in osteoclast induction in periligative gingival tissue) was decreased. When primary osteoblasts (POBs) and bone marrow cells (BMCs) derived from WT and aly/aly mice were prepared and co-cultured, osteoclasts were induced from WT-derived BMCs, regardless of the origin of the POBs, but hardly formed from aly/aly mouse-derived BMCs. Furthermore, the local administration of an NIK inhibitor, Cpd33, inhibited osteoclast formation and thereby inhibited alveolar bone resorption in the periodontitis model. Therefore, the NIK-mediated NF-κB alternative pathway can be a therapeutic target for periodontal disease.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , Periodontal Diseases , Periodontitis , Mice , Animals , NF-kappa B/metabolism , Inflammation
4.
bioRxiv ; 2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36798359

ABSTRACT

Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. In this study, we evaluated morphology of the superficial cell layer in the Xenopus neural plate. At the stages corresponding to the onset of tissue folding, we observed the alternation of cells with apically constricting and apically expanding apical domains. The cells had a biased orientation along the anteroposterior (AP) axis. This apical domain heterogeneity required planar cell polarity (PCP) signaling and was especially pronounced at neural plate hinges. Vertex model simulations suggested that spatially dispersed isotropically constricting cells cause the elongation of their non-constricting counterparts along the AP axis. Consistent with this hypothesis, cell-autonomous induction of apical constriction in Xenopus ectoderm cells was accompanied by the expansion of adjacent non-constricting cells. Our observations indicate that a subset of isotropically constricting cells can initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the AP axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that neural folding relies on PCP-dependent transduction of mechanical signals between neuroepithelial cells.

5.
J Med Cases ; 13(8): 402-407, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36128067

ABSTRACT

Adenosarcomas are biphasic neoplasms that usually originate in the uterine corpus and comprise a benign epithelial component and a malignant stromal component. Uterine adenosarcomas typically present with abnormal genital bleeding, an enlarged uterus, and a tumor that protrudes into the endometrial cavity. These tumors rarely protrude through the cervical os and are often misdiagnosed as cervical polyps. We present the case of a patient with cervical adenosarcoma with characteristics different from those reported in previous cases. This tumor showed endophytic growth, which is rare in cervical adenosarcomas. No watery discharge or obvious genital bleeding was noted. Although the tumor measured 4 cm, vaginal bleeding was noted only once at 6 months before diagnosis and was in the form of faint brown discharge.

6.
Development ; 149(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35451459

ABSTRACT

Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.


Subject(s)
Actomyosin , Ectoderm , Actomyosin/metabolism , Animals , Ectoderm/metabolism , Morphogenesis/physiology , Myosin Heavy Chains , Myosin Type II/genetics , Myosin Type II/metabolism , Xenopus laevis/metabolism
7.
Bone ; 154: 116210, 2022 01.
Article in English | MEDLINE | ID: mdl-34592494

ABSTRACT

Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).


Subject(s)
Amelogenesis , Crk-Associated Substrate Protein/metabolism , Dental Enamel Proteins , Ameloblasts/metabolism , Animals , Dental Enamel Proteins/metabolism , Epithelial Cells/metabolism , Mice , X-Ray Microtomography
8.
Lab Invest ; 101(11): 1475-1483, 2021 11.
Article in English | MEDLINE | ID: mdl-34504305

ABSTRACT

Oral malignant melanoma, which frequently invades the hard palate or maxillary bone, is extremely rare and has a poor prognosis. Bone morphogenetic protein (BMP) is abundantly expressed in bone matrix and is highly expressed in malignant melanoma, inducing an aggressive phenotype. We examined the role of BMP signaling in the acquisition of an aggressive phenotype in melanoma cells in vitro and in vivo. In five cases, immunohistochemistry indicated the phosphorylation of Smad1/5 (p-Smad1/5) in the nuclei of melanoma cells. In the B16 mouse and A2058 human melanoma cell lines, BMP2, BMP4, or BMP7 induces morphological changes accompanied by the downregulation of E-cadherin, and the upregulation of N-cadherin and Snail, markers of epithelial-mesenchymal transition (EMT). BMP2 also stimulates cell invasion by increasing matrix metalloproteinase activity in B16 cells. These effects were canceled by the addition of LDN193189, a specific inhibitor of Smad1/5 signaling. In vivo, the injection of B16 cells expressing constitutively activated ALK3 enhanced zygoma destruction in comparison to empty B16 cells by increasing osteoclast numbers. These results suggest that the activation of BMP signaling induces EMT, thus driving the acquisition of an aggressive phenotype in malignant melanoma.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Bone Neoplasms/secondary , Melanoma/secondary , Mouth Neoplasms/pathology , Smad Proteins, Receptor-Regulated/metabolism , Animals , Bone Neoplasms/metabolism , Bone and Bones/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Humans , Male , Melanoma/metabolism , Mice , Mouth Neoplasms/metabolism , Neoplasm Invasiveness , Signal Transduction
9.
Curr Top Dev Biol ; 145: 41-60, 2021.
Article in English | MEDLINE | ID: mdl-34074535

ABSTRACT

Planar cell polarity (PCP) refers to the coordinated polarization of cells within the plane of a tissue. PCP is a controlled by a group of conserved proteins organized in a specific signaling pathway known as the PCP pathway. A hallmark of PCP signaling is the asymmetric localization of "core" PCP protein complexes at the cell cortex, although endogenous PCP cues needed to establish this asymmetry remain unknown. While the PCP pathway was originally discovered as a mechanism directing the planar organization of Drosophila epithelial tissues, subsequent studies in Xenopus and other vertebrates demonstrated a critical role for this pathway in the regulation of actomyosin-dependent morphogenetic processes, such as neural tube closure. Large size and external development of amphibian embryos allows live cell imaging, placing Xenopus among the best models of vertebrate neurulation at the molecular, cellular and organismal level. This review describes cross-talk between core PCP proteins and actomyosin contractility that ultimately leads to tissue-scale movement during neural tube closure.


Subject(s)
Actomyosin/metabolism , Cell Polarity , Models, Animal , Neural Tube/embryology , Neurulation , Xenopus laevis/embryology , Animals , Humans
10.
J Biol Chem ; 296: 100274, 2021.
Article in English | MEDLINE | ID: mdl-33428938

ABSTRACT

The G protein-coupled receptor GPRC6A regulates various physiological processes in response to its interaction with multiple ligands, such as extracellular basic amino acids, divalent cations, testosterone, and the uncarboxylated form of osteocalcin (GluOC). Global ablation of GPRC6A increases the susceptibility of mice to diet-induced obesity and related metabolic disorders. However, given that GPRC6A is expressed in many tissues and responds to a variety of hormonal and nutritional signals, the cellular and molecular mechanisms underlying the development of metabolic disorders in conventional knockout mice have remained unclear. On the basis of our previous observation that long-term oral administration of GluOC markedly reduced adipocyte size and improved glucose tolerance in WT mice, we examined whether GPRC6A signaling in adipose tissue might be responsible for prevention of metabolic disorders. We thus generated adipocyte-specific GPRC6A knockout mice, and we found that these animals manifested increased adipose tissue weight, adipocyte hypertrophy, and adipose tissue inflammation when fed a high-fat and high-sucrose diet compared with control mice. These effects were associated with reduced lipolytic activity because of downregulation of lipolytic enzymes such as adipose triglyceride lipase and hormone-sensitive lipase in adipose tissue of the conditional knockout mice. Given that, among GPR6CA ligands tested, GluOC and ornithine increased the expression of adipose triglyceride lipase in cultured 3T3-L1 adipocytes in a manner dependent on GPRC6A, our results suggest that the constitutive activation of GPRC6A signaling in adipocytes by GluOC or ornithine plays a key role in adipose lipid handling and the prevention of obesity and related metabolic disorders.


Subject(s)
Inflammation/genetics , Obesity/genetics , Osteocalcin/genetics , Receptors, G-Protein-Coupled/genetics , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Glucose Tolerance Test , Humans , Inflammation/pathology , Insulin/genetics , Insulin Resistance/genetics , Lipase/genetics , Lipolysis/genetics , Mice , Mice, Knockout , Obesity/metabolism , Obesity/pathology
11.
Eur J Pharmacol ; 895: 173881, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33476655

ABSTRACT

OBJECTIVES: Volume-regulated anion channels (VRACs), expressed in various cells, play an important role in cell volume regulation. Despite being physiologically defined almost half a century ago, only the molecular candidates of VRAC, TMEM16A, LRRC8A, and bestrophin-1 (BEST1), are known. Here, we aimed to explore the functional significance of VRAC in, HST-1, an oral squamous cell carcinoma (OSCC) cell line. METHODS: Cell proliferation assays, RT-PCR, Western blot, and flow cytometry were used to estimate changes in gene expression and cell proliferation. Ion channel activity was recorded using the patch-clamp technique. Specific genes were knocked-down by siRNA assays. RESULTS: VRAC, identified as a hypotonicity-induced current, was highly functional and associated with the proliferation of HST-1 cells but not of HaCaT (a normal keratinocyte) cells. The pharmacological profile of VRAC in HST-1 was similar to that reported previously. DCPIB, a specific VRAC inhibitor, completely inhibited VRAC and proliferation of HST-1 cells, eventually leading to apoptosis. VRAC in HST-1 was attenuated by the knockdown of TMEM16A and LRRC8A, while knockdown of BEST1 affected cell proliferation. In situ proximity ligation assay showed that TMEM16A and LRRC8A co-localized under isotonic conditions (300 mOsM) but were separated under hypotonic conditions (250 mOsM) on the plasma membrane. CONCLUSIONS: We have found that VRAC acts to regulate the proliferation of human metastatic OSCC cells and the composition of VRAC may involve in the interactions between TMEM16A and LRRC8A in HST-1 cells.


Subject(s)
Anoctamin-1/metabolism , Cell Proliferation , Chloride Channels/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Tongue Neoplasms/metabolism , Anoctamin-1/antagonists & inhibitors , Anoctamin-1/genetics , Antineoplastic Agents/pharmacology , Apoptosis , Bestrophins/genetics , Bestrophins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chloride Channels/antagonists & inhibitors , Chloride Channels/genetics , Cyclopentanes/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Indans/pharmacology , Ion Channel Gating , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Protein Binding , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/secondary , Tongue Neoplasms/drug therapy , Tongue Neoplasms/genetics , Tongue Neoplasms/pathology
12.
Lab Invest ; 101(1): 38-50, 2021 01.
Article in English | MEDLINE | ID: mdl-32901097

ABSTRACT

Epidermal growth factor receptor (EGFR) is highly expressed in several types of cancer cells including oral squamous cell carcinoma (OSCC). EGF/EGFR signaling is recognized as an important molecular target in cancer therapy. However, cancer cells often become tolerant to EGF/EGFR signaling-targeted therapies. In the tumor microenvironment, the tumor incites inflammation and the inflammation-derived cytokines make a considerable impact on cancer development. In addition, hyperosmolarity is also induced, but the role of osmotic stress in cancer development has not been fully understood. This study demonstrates molecular insights into hyperosmolarity effect on OSCC development and shows that NFAT5 transcription factor plays an important functional role in enhancing the oral cancer cell proliferation by inducing the EGFR translocation from the endoplasmic reticulum to the plasma membrane through increase the expression of DPAGT1, an essential enzyme for catalyzing the first committed step of N-linked protein glycosylation. These results suggest that hyperosmolarity-induced intra-nuclear translocation of NFAT5 essential for DPAGT1 activation and EGFR subcellular translocation responsible for OSCC tumor progression.


Subject(s)
N-Acetylglucosaminyltransferases/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Tongue Neoplasms/metabolism , Transcription Factors/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , Humans , Osmotic Pressure , Tumor Microenvironment
13.
J Cell Sci ; 133(12)2020 06 28.
Article in English | MEDLINE | ID: mdl-32501287

ABSTRACT

Erythrocyte protein band 4.1 like 5 (EPB41L5) is an adaptor protein beneath the plasma membrane that functions to control epithelial morphogenesis. Here we report a previously uncharacterized role of EPB41L5 in controlling ciliary function. We found that EPB41L5 forms a complex with IQCB1 (previously known as NPHP5), a ciliopathy protein. Overexpression of EPB41L5 reduced IQCB1 localization at the ciliary base in cultured mammalian epithelial cells. Conversely, epb41l5 knockdown increased IQCB1 localization at the ciliary base. epb41l5-deficient zebrafish embryos or embryos expressing C-terminally modified forms of Epb41l5 developed cilia with reduced motility and exhibited left-right patterning defects, an outcome of abnormal ciliary function. We observed genetic synergy between epb41l5 and iqcb1. Moreover, EPB41L5 decreased IQCB1 interaction with CEP290, another ciliopathy protein and a component of the ciliary base and centrosome. Together, these observations suggest that EPB41L5 regulates the composition of the ciliary base and centrosome through IQCB1 and CEP290.


Subject(s)
Cilia , Zebrafish , Animals , Centrosome , Cytoskeletal Proteins , Eye Proteins , Zebrafish/genetics , Zebrafish Proteins/genetics
14.
Bone ; 135: 115316, 2020 06.
Article in English | MEDLINE | ID: mdl-32169603

ABSTRACT

Musculoskeletal diseases and disorders, including osteoporosis and rheumatoid arthritis are diseases that threaten a healthy life expectancy, and in order to extend the healthy life expectancy of elderly people, it is important to prevent bone and joint diseases and disorders. We previously reported that alymphoplasia (aly/aly) mice, which have a loss-of-function mutation in the Nik gene involved in the processing of p100 to p52 in the alternative NF-κB pathway, show mild osteopetrosis with a decrease in the osteoclast number, suggesting that the alternative NF-κB pathway is a potential drug target for ameliorating bone diseases. Recently, the novel NF-κB-inducing kinase (NIK)-specific inhibitor compound 33 (Cpd33) was developed, and we examined its effect on osteoclastic bone resorption in vitro and in vivo. Cpd33 inhibited the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis accompanied by a decrease in the expression of nfatc1, dc-stamp, and cathepsin K, markers of osteoclast differentiation, without affecting the cell viability, in a dose-dependent manner. Cdp33 specifically suppressed the RANKL-induced processing of p100 to p52 but not the phosphorylation of p65 or the degradation or resynthesis of IκBα in osteoclast precursors. Cpd33 also suppressed the bone-resorbing activity in mature osteoclasts. Furthermore, Cdp33 treatment prevented bone loss by suppressing the osteoclast formation without affecting the osteoblastic bone formation in ovariectomized mice. Taken together, NIK inhibitors may be a new option for patients with a reduced response to conventional pharmacotherapy or who have serious side effects.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , Aged , Animals , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Cell Differentiation , Humans , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , Protein Serine-Threonine Kinases , RANK Ligand/metabolism , NF-kappaB-Inducing Kinase
15.
Cell Biochem Funct ; 38(3): 300-308, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31887784

ABSTRACT

Podosome formation in osteoclasts is an important initial step in osteoclastic bone resorption. Mice lacking c-Src (c-Src-/- ) exhibited osteopetrosis due to a lack of podosome formation in osteoclasts. We previously identified p130Cas (Crk-associated substrate [Cas]) as one of c-Src downstream molecule and osteoclast-specific p130Cas-deficient (p130CasΔOCL-/- ) mice also exhibited a similar phenotype to c-Src-/- mice, indicating that the c-Src/p130Cas plays an important role for bone resorption by osteoclasts. In this study, we performed a cDNA microarray and compared the gene profiles of osteoclasts from c-Src-/- or p130CasΔOCL-/- mice with wild-type (WT) osteoclasts to identify downstream molecules of c-Src/p130Cas involved in bone resorption. Among several genes that were commonly downregulated in both c-Src-/- and p130CasΔOCL-/- osteoclasts, we identified kinesin family protein 1c (Kif1c), which regulates the cytoskeletal organization. Reduced Kif1c expression was observed in both c-Src-/- and p130CasΔOCL-/- osteoclasts compared with WT osteoclasts. Kif1c exhibited a broad tissue distribution, including osteoclasts. Knockdown of Kif1c expression using shRNAs in WT osteoclasts suppressed actin ring formation. Kif1c overexpression restored bone resorption subsequent to actin ring formation in p130CasΔOCL-/- osteoclasts but not c-Src-/- osteoclasts, suggesting that Kif1c regulates osteoclastic bone resorption in the downstream of p130Cas (191 words). SIGNIFICANCE OF THE STUDY: We previously showed that the c-Src/p130Cas (Cas) plays an important role for bone resorption by osteoclasts. In this study, we identified kinesin family protein 1c (Kif1c), which regulates the cytoskeletal organization, as a downstream molecule of c-Src/p130Cas axis, using cDNA microarray. Knockdown of Kif1c expression using shRNAs in wild-type osteoclasts suppressed actin ring formation. Kif1c overexpression restored bone resorption subsequent to actin ring formation in osteoclast-specific p130Cas-deficient (p130CasΔOCL-/- ) osteoclasts but not c-Src-/- osteoclasts, suggesting that Kif1c regulates osteoclastic bone resorption in the downstream of p130Cas.


Subject(s)
Bone Resorption , Crk-Associated Substrate Protein/metabolism , Gene Expression Regulation , Kinesins/metabolism , Osteoclasts/metabolism , Actins/metabolism , Animals , Bone and Bones/metabolism , CSK Tyrosine-Protein Kinase/genetics , CSK Tyrosine-Protein Kinase/metabolism , HEK293 Cells , Heterozygote , Humans , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Phenotype , Phosphorylation , RNA, Small Interfering/metabolism , Recombinant Proteins/metabolism , Signal Transduction , Zinc Fingers
16.
J Cell Biochem ; 120(11): 18793-18804, 2019 11.
Article in English | MEDLINE | ID: mdl-31243813

ABSTRACT

Skeletal tissue homeostasis is maintained via the balance of osteoclastic bone resorption and osteoblastic bone formation. Autophagy and apoptosis are essential for the maintenance of homeostasis and normal development in cells and tissues. We found that Bax-interacting factor 1 (Bif-1/Endophillin B1/SH3GLB1), involving in autophagy and apoptosis, was upregulated during osteoclastogenesis. Furthermore, mature osteoclasts expressed Bif-1 in the cytosol, particularly the perinuclear regions and podosome, suggesting that Bif-1 regulates osteoclastic bone resorption. Bif-1-deficient (Bif-1 -/- ) mice showed increased trabecular bone volume and trabecular number. Histological analyses indicated that the osteoclast numbers increased in Bif-1 -/- mice. Consistent with the in vivo results, osteoclastogenesis induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) was accelerated in Bif-1 -/- mice without affecting RANKL-induced activation of RANK downstream signals, such as NF-κB and mitogen-activated protein kinases (MAPKs), CD115/RANK expression in osteoclast precursors, osteoclastic bone-resorbing activity and the survival rate. Unexpectedly, both the bone formation rate and osteoblast surface substantially increased in Bif-1 -/- mice. Treatment with ß-glycerophosphate (ß-GP) and ascorbic acid (A.A) enhanced osteoblastic differentiation and mineralization in Bif-1 -/- mice. Finally, bone marrow cells from Bif-1 -/- mice showed a significantly higher colony-forming efficacy by the treatment with or without ß-GP and A.A than cells from wild-type (WT) mice, suggesting that cells from Bif-1 -/- mice had higher clonogenicity and self-renewal activity than those from WT mice. In summary, Bif-1 might regulate bone homeostasis by controlling the differentiation and function of both osteoclasts and osteoblasts (235 words).


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cancellous Bone/metabolism , Homeostasis , Osteoblasts/metabolism , Osteoclasts/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cancellous Bone/cytology , Mice , Mice, Knockout , Osteoblasts/cytology , Osteoclasts/cytology , RANK Ligand/genetics , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism
17.
Bone ; 121: 29-41, 2019 04.
Article in English | MEDLINE | ID: mdl-30611922

ABSTRACT

Endochondral ossification is important for skeletal development. Recent findings indicate that the p65 (RelA) subunit, a main subunit of the classical nuclear factor-κB (NF-κB) pathway, plays essential roles in chondrocyte differentiation. Although several groups have reported that the alternative NF-κB pathway also regulates bone homeostasis, the role of the alternative NF-κB pathway in chondrocyte development is still unclear. Here, we analyzed the in vivo function of the alternative pathway on endochondral ossification using p100-deficient (p100-/-) mice, which carry a homozygous deletion of the COOH-terminal ankyrin repeats of p100 but still express functional p52 protein. The alternative pathway was activated during the periarticular stage in wild-type mice. p100-/- mice exhibited dwarfism, and histological analysis of the growth plate revealed abnormal arrangement of chondrocyte columns and a narrowed hypertrophic zone. Consistent with these observations, the expression of hypertrophic chondrocyte markers, type X collagen (ColX) or matrix metalloproteinase 13, but not early chondrogenic markers, such as Col II or aggrecan, was suppressed in p100-/- mice. An in vivo BrdU tracing assay clearly demonstrated less proliferative activity in chondrocytes in p100-/- mice. These defects were partly rescued when the RelB gene was deleted in p100-/- mice. Taken together, the alternative NF-κB pathway may regulate chondrocyte proliferation and differentiation to maintain endochondral ossification.


Subject(s)
NF-kappa B/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Chondrocytes/metabolism , Chondrogenesis/genetics , Chondrogenesis/physiology , Immunohistochemistry , In Situ Hybridization , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteogenesis/genetics , Osteogenesis/physiology , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology , Skeleton/metabolism
18.
Zebrafish ; 16(1): 15-28, 2019 02.
Article in English | MEDLINE | ID: mdl-30300574

ABSTRACT

Testicular tumors are the most common solid malignant tumors in men 20-35 years of age. Although most of testicular tumors are curable, current treatments still fail in 15%-20% of patients. However, insufficient understanding of the molecular basis and lack of animal models limit development of more effective treatments. This study reports the identification of a novel zebrafish mutant line, ns1402, which develops testicular germ cell tumors (TGCTs). While both male and female ns1402 mutants were fertile at young age, male ns1402 mutants became infertile as early as 9 months of age. This infertility was associated with progressive loss of mature sperm. Failure of spermatogenesis was, at least in part, explained by progressive loss of mature Leydig cells, a source of testosterone that is essential for spermatogenesis. Interestingly, TGCTs in ns1402 mutants contained a large number of Sertoli cells and gene expression profiles of Sertoli cells were altered before loss of mature Leydig cells. This suggests that changes in Sertoli cell properties happened first, followed by loss of mature Leydig cells and failure of spermatogenesis. Taken together, this study emphasizes the importance of cell-cell interactions and cell signaling in the testis for spermatogenesis and tissue homeostasis.


Subject(s)
Fish Diseases/genetics , Neoplasms, Germ Cell and Embryonal/genetics , Testicular Neoplasms/genetics , Zebrafish , Animals , Disease Models, Animal , Female , Fish Diseases/physiopathology , Leydig Cells/physiology , Male , Mutation , Sertoli Cells/physiology , Spermatogenesis
19.
Cell Death Dis ; 9(12): 1194, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30546087

ABSTRACT

The uncarboxylated form of osteocalcin (GluOC) regulates glucose and lipid metabolism in mice. We previously showed that low-dose (≤10 ng/ml) GluOC induces the expression of adiponectin and peroxisome proliferator-activated receptor γ (PPARγ) via a cAMP-PKA-ERK-CREB signaling pathway in 3T3-L1 adipocytes. We also noticed that high-dose (≥20 ng/ml) GluOC inhibits the expression of adiponectin and PPARγ in these cells. We have here explored the mechanism underlying these effects of high-dose GluOC. High-dose GluOC triggered morphological changes in 3T3-L1 adipocytes suggestive of the induction of cell death. It activated the putative GluOC receptor GPRC6A and thereby induced the production of cAMP and activation of protein kinase A (PKA), similar to signaling by low-dose GluOC with the exception that the catalytic subunit of PKA also entered the nucleus. Cytosolic PKA induced phosphorylation of cAMP response element-binding protein (CREB) at serine-133 via extracellular signal-regulated kinase (ERK). Nuclear PKA appeared to mediate the inhibitory phosphorylation of salt-inducible kinase 2 (SIK2) at serine-358 and thereby to alleviate the inhibitory phosphorylation of the CREB co-activator p300 at serine-89. The activation of CREB and p300 resulted in increased expression of the transcription factor FoxO1 and consequent upregulation of Fas ligand (FasL) at the plasma membrane. The interaction of FasL with Fas on neighboring adipocytes triggered the phosphorylation at threonine-357/serine-358 and homotrimerization of mixed-lineage kinase domain-like protein (MLKL), a key regulator of necroptosis, as well as Ca2+ influx via transient receptor potential melastatin 7 (TRPM7), the generation of reactive oxygen species and lipid peroxides, and dephosphorylation of dynamin-related protein 1 (DRP1) at serine-637, resulting in mitochondrial fragmentation. Together, our results indicate that high-dose GluOC triggers necroptosis through upregulation of FasL at the plasma membrane in a manner dependent of activation of CREB-p300, followed by the activation of Fas signaling in neighboring adipocytes.


Subject(s)
Cell Death/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Fas Ligand Protein/genetics , fas Receptor/genetics , p300-CBP Transcription Factors/genetics , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adiponectin/genetics , Animals , Cell Death/drug effects , Cell Membrane/genetics , Cyclic AMP/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Dynamins/genetics , Gene Expression Regulation, Developmental/drug effects , Glucose/metabolism , Lipid Metabolism/drug effects , MAP Kinase Signaling System/drug effects , Mice , Osteocalcin/pharmacology , Phosphorylation/drug effects , TRPM Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...