Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Ultrasound Med Biol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38760280

ABSTRACT

BACKGROUND: Acoustically activated perfluoropropane droplets (PD) formulated from lipid encapsulated microbubble preparations produce a delayed myocardial contrast enhancement that preferentially highlights the infarct zones (IZ). Since activation of PDs may be temperature sensitive, it is unclear what effect body temperature (BT) has on acoustic activation (AA). OBJECTIVE: We sought to determine whether the microvascular retention and degree of myocardial contrast intensity (MCI) would be affected by BT at the time of intravenous injection. METHODS: We administered intravenous (IV) PD in nine rats following 60 min of ischemia followed by reperfusion. Injections in these rats were given at temperatures above and below 36.5°C, with high MI activation in both groups at 3 or 6 min following IV injection (IVI). In six additional rats (three in each group), IV PDs were given only at one temperature (<36.5°C or ≥36.5°C), permitting a total of 12 comparisons of different BT. Differences in background subtracted MCI at 3-6 min post-injection were compared in the infarct zone (IZ) and remote zone (RZ). Post-mortem lung hematoxylin and eosin (H&E) staining was performed to assess the effect potential thermal activation on lung tissue. RESULTS: Selective MCI within the IZ was observed in 8 of 12 rats who received IVI of PDs at <36.5°C, but none of the 12 rats who had IVI at the higher temperature (p < 0.0001). Absolute MCI following droplet activation was significantly higher in both the IZ and RZ when given at the lower BT. H&E indicated significant red blood extravasation in 5/7 rats who had had IV injections at higher BT, and 0/7 rats who had IV PDs at <36.5°C. CONCLUSIONS: Selective IZ enhancement with AA of intravenous PDs is possible, but temperature sensitive. Thermal activation appears to occur when PDs are given at higher temperatures, preventing AA, and increasing unwanted bioeffects.

2.
J Ultrasound Med ; 43(6): 1063-1080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38440926

ABSTRACT

BACKGROUND: Acoustically activatable perfluoropropane droplets (PD) can be formulated from commercially available microbubble preparations. Diagnostic transthoracic ultrasound frequencies have resulted in acoustic activation (AA) predominately within myocardial infarct zones (IZ). OBJECTIVE: We hypothesized that the AA area following acute coronary ischemia/reperfusion (I/R) would selectively enhance the developing scar zone, and target bioeffects specifically to this region. METHODS: We administered intravenous PD in 36 rats and 20 pigs at various stages of myocardial scar formation (30 minutes, 1 day, and 7 days post I/R) to determine what effect infarct age had on the AA within the IZ. This was correlated with histology, myeloperoxidase activity, and tissue nitrite activity. RESULTS: The degree of AA within the IZ in rats was not associated with collagen content, neutrophil infiltration, or infarct age. AA within 24 hours of I/R was associated with increased nitric oxide utilization selectively within the IZ (P < .05 compared with remote zone). The spatial extent of AA in pigs correlated with infarct size only when performed before sacrifice at 7 days (r = .74, P < .01). CONCLUSIONS: Acoustic activation of intravenous PD enhances the developing scar zone following I/R, and results in selective tissue nitric oxide utilization.


Subject(s)
Fluorocarbons , Myocardial Infarction , Animals , Fluorocarbons/pharmacokinetics , Swine , Rats , Myocardial Infarction/diagnostic imaging , Male , Contrast Media/pharmacokinetics , Nanoparticles , Rats, Sprague-Dawley , Myocardium/metabolism , Disease Models, Animal , Myocardial Reperfusion Injury/diagnostic imaging , Microbubbles , Female , Ultrasonography/methods
3.
Ultrasound Med Biol ; 49(5): 1058-1069, 2023 05.
Article in English | MEDLINE | ID: mdl-36797095

ABSTRACT

OBJECTIVE: Phase-change contrast agents (PCCAs) are perfluorocarbon nanodroplets (NDs) that have been widely studied for ultrasound imaging in vitro, pre-clinical studies, and most recently incorporated a variant of PCCAs, namely a microbubble-conjugated microdroplet emulsion, into the first clinical studies. Their properties also make them attractive candidates for a variety of diagnostic and therapeutic applications including drug-delivery, diagnosis and treatment of cancerous and inflammatory diseases, as well as tumor-growth tracking. However, control over the thermal and acoustic stability of PCCAs both in vivo and in vitro has remained a challenge for expanding the potential utility of these agents in novel clinical applications. As such, our objective was to determine the stabilizing effects of layer-by-layer assemblies and its effect on both thermal and acoustic stability. METHODS: We utilized layer-by-layer (LBL) assemblies to coat the outer PCCA membrane and characterized layering by measuring zeta potential and particle size. Stability studies were conducted by; 1) incubating the LBL-PCCAs at atmospheric pressure at 37∘C and 45∘C followed by; 2) ultrasound-mediated activation at 7.24 MHz and peak-negative pressures ranging from 0.71 - 5.48 MPa to ascertain nanodroplet activation and resultant microbubble persistence. The thermal and acoustic properties of decafluorobutane gas-condensed nanodroplets (DFB-NDs) layered with 6 and 10 layers of charge-alternating biopolymers, (LBL6NDs and LBL10NDs) respectively, were studied and compared to non-layered DFB-NDs. Half-life determinations were conducted at both 37∘C and 45∘C with acoustic droplet vaporization (ADV) measurements occurring at 23∘C. DISCUSSION: Successful application of up to 10 layers of alternating positive and negatively charged biopolymers onto the surface membrane of DFB-NDs was demonstrated. Two major claims were substantiated in this study; namely, (1) biopolymeric layering of DFB-NDs imparts a thermal stability up to an extent; and, (2) both LBL6NDs and LBL10NDs did not appear to alter particle acoustic vaporization thresholds, suggesting that the thermal stability of the particle may not necessarily be coupled with particle acoustic vaporization thresholds. CONCLUSION: Results demonstrate that the layered PCCAs had higher thermal stability, where the half-lifes of the LBLxNDs are significantly increased after incubation at 37∘C and 45∘C. Furthermore, the acoustic vaporization profiles the DFB-NDs, LBL6NDs, and LBL10NDs show that there is no statistically significant difference between the acoustic vaporization energy required to initiate acoustic droplet vaporization.


Subject(s)
Fluorocarbons , Neoplasms , Humans , Contrast Media , Layer-by-Layer Nanoparticles , Acoustics , Volatilization , Ultrasonography/methods , Microbubbles
4.
Ultrasound Med Biol ; 48(11): 2322-2334, 2022 11.
Article in English | MEDLINE | ID: mdl-36050231

ABSTRACT

Perfluoropropane droplets (PDs) cross endothelial barriers and can be acoustically activated for selective myocardial extravascular enhancement following intravenous injection (IVI). Our objective was to determine how to optimally activate extravascular PDs for transthoracic ultrasound-enhanced delineation of a developing scar zone (DSZ). Ultrafast-frame-rate microscopy was conducted to determine the effect of pulse sequence on the threshold of bubble formation from PDs. In vitro studies were subsequently performed at different flow rates to determine acoustic activation and inertial cavitation thresholds for a PD infusion using multipulse fundamental non-linear or single-pulse harmonic imaging. IVIs of PDs were given in 9 rats and 10 pigs following prolonged left anterior descending ischemia to detect and quantify PD kinetics within the DSZ. A multipulse sequence had a lower myocardial index threshold for acoustic activation by ultrafast-frame-rate microscopy. Acoustic activation was observed at a myocardial index ≥0.4 below the inertial cavitation threshold for both pulse sequences. In rats, confocal microscopy and serial acoustic activation imaging detected higher droplet presence (relative to remote regions) within the DSZ at 3 min post-IVI. Transthoracic high-mechanical-index impulses with fundamental non-linear imaging in pigs at this time post-IVI resulted in selective contrast enhancement within the DSZ.


Subject(s)
Fluorocarbons , Myocardial Infarction , Acoustics , Animals , Contrast Media , Microbubbles , Rats , Swine
5.
J Am Soc Echocardiogr ; 34(8): 898-909, 2021 08.
Article in English | MEDLINE | ID: mdl-33711458

ABSTRACT

BACKGROUND: Perfluoropropane droplets formulated from commercial microbubbles exhibit different acoustic characteristics than their parent microbubbles, most likely from enhanced endothelial permeability. This enhanced permeability may permit delayed echo-enhancement imaging (DEEI) similar to delayed enhancement magnetic resonance imaging (DE-MRI). We hypothesized this would allow detection and quantification of myocardial scar. METHODS: In 15 pigs undergoing 90 minutes of left anterior descending ischemia by either balloon (n = 13) or thrombotic occlusion (n = 2), DE-MRI was performed at 2-24 days postocclusion. Delayed echo-enhancement imaging was performed at 2-4 minutes following an intravenous injection of 1 mL of 50% Definity (Lantheus Medical) compressed into 180 nm droplets; DEEI was attempted in all pigs with single-pulse harmonic imaging at 1.7 transmit/3.4 MHz receive. Myocardial defects observed with DEEI were quantified (percentage of infarct area) and compared with DE-MRI as well as postmortem staining. In six pigs, multipulse low-mechanical index (MI) fundamental nonlinear imaging (FNLI) with intermittent high-MI impulses was performed to determine whether droplet activation within the infarct zone was achievable with a longer pulse duration. RESULTS: The range of infarct size area by DE-MRI ranged from 0% to 46% of total left ventricular area. Single-pulse harmonic imaging detected a contrast defect that correlated closely with infarct area by DE-MRI (r = 0.81, P = .0001). The FNLI high-MI impulses resulted in droplet activation in both the infarct and normal zones. Harmonic subtraction of the FNLI images resulted in infarct zone enhancement that also correlated closely with infarct size (r = 0.83; P = .04). Droplets were observed on postmortem transmission electron microscopy within myocytes of the infarct and remote normal zone. CONCLUSION: Intravenously Definity nanodroplets can be utilized to detect and quantify infarct zone at the bedside using DEEI techniques.


Subject(s)
Contrast Media , Myocardial Infarction , Animals , Magnetic Resonance Imaging , Microbubbles , Myocardial Infarction/diagnostic imaging , Myocardium , Swine
6.
Ultrasound Med Biol ; 46(1): 122-136, 2020 01.
Article in English | MEDLINE | ID: mdl-31585767

ABSTRACT

Focused ultrasound (FUS), in combination with microbubble contrast agents, can be used to transiently open the blood-brain barrier (BBB) to allow intravascular agents to cross into the brain. Often, FUS is carried out in conjunction with magnetic resonance imaging (MRI) to evaluate BBB opening to gadolinium-based MRI contrast agents. Although MRI allows direct visualization of the distribution of gadolinium-based contrast agents in the brain parenchyma, it does not allow measurements of the distribution of other molecules crossing the BBB. Therapeutic molecules (e.g., monoclonal antibodies) are much different in size than MRI contrast agents and have been found to have different distributions in the brain after FUS-mediated BBB opening. In the work described here, we combined in vivo MRI and ex vivo multispectral fluorescence imaging to compare the distributions of MRI contrast and dextran molecules of different molecular weights (3, 70 and 500 kDa) after FUS-mediated BBB opening through a range of ultrasound pressures (0.18-0.46 MPa) in laboratory mice. The volume of brain exposed was calculated from the MRI and fluorescence images and was significantly dependent on both molecular weight and ultrasound pressure. Diffusion coefficients of the different-molecular-weight dextran molecules in the brain parenchyma were also calculated from the fluorescence images and were negatively correlated with the molecular weight of the dextran molecules. The results of this work build on a body of knowledge that is critically important for the FUS technique to be used in clinical delivery of therapeutics to the brain.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Drug Delivery Systems/methods , Macromolecular Substances/administration & dosage , Magnetic Resonance Imaging , Optical Imaging , Animals , Brain/diagnostic imaging , Brain/metabolism , Contrast Media , Diffusion , Female , Macromolecular Substances/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Optical Imaging/methods , Ultrasonography/methods
7.
Ultrasound Med Biol ; 45(5): 1131-1142, 2019 05.
Article in English | MEDLINE | ID: mdl-30827708

ABSTRACT

Molecular targeted nanodroplets that can extravasate beyond the vascular space have great potential to improve tumor detection and characterisation. High-frame-rate ultrasound, on the other hand, is an emerging tool for imaging at a frame rate one to two orders of magnitude higher than those of existing ultrasound systems. In this study, we used high-frame-rate ultrasound combined with optics to study the acoustic response and size distribution of folate receptor (FR)-targeted versus non-targeted (NT)-nanodroplets in vitro with MDA-MB-231 breast cancer cells immediately after ultrasound activation. A flow velocity mapping technique, Stokes' theory and optical microscopy were used to estimate the size of both floating and attached vaporised nanodroplets immediately after activation. The floating vaporised nanodroplets were on average more than seven times larger than vaporised nanodroplets attached to the cells. The results also indicated that the acoustic signal of vaporised FR-targeted-nanodroplets persisted after activation, with 70% of the acoustic signals still present 1 s after activation, compared with the vaporised NT-nanodroplets, for which only 40% of the acoustic signal remained. The optical microscopic images revealed on average six times more vaporised FR-targeted-nanodroplets generated with a wider range of diameters (from 4 to 68 µm) that were still attached to the cells, compared with vaporised NT-nanodroplets (from 1 to 7 µm) with non-specific binding after activation. The mean size of attached vaporised FR-targeted-nanodroplets was on average about threefold larger than that of attached vaporised NT-nanodroplets. Taking advantage of high-frame-rate contrast-enhanced ultrasound and optical microscopy, this study offers an improved understanding of the vaporisation of the targeted nanodroplets in terms of their size and acoustic response in comparison with NT-nanodroplets. Such understanding would help in the design of optimised methodology for imaging and therapeutic applications.


Subject(s)
Contrast Media , Drug Delivery Systems/methods , Image Enhancement/methods , Nanoparticles/administration & dosage , Ultrasonography/methods , Acoustics , Cell Line, Tumor , Folate Receptors, GPI-Anchored , Humans , In Vitro Techniques , Microbubbles , Volatilization
8.
Ultrasound Med Biol ; 44(12): 2728-2738, 2018 12.
Article in English | MEDLINE | ID: mdl-30228045

ABSTRACT

Breast cancer remains a leading cause of death for women throughout the world. Recent advances in medical imaging technologies and tumor targeting agents signify vast potential for progress toward improved management of this global problem. Phase-change contrast agents (PCCAs) are dynamic imaging agents with practical applications in both the research and clinical settings. PCCAs possess characteristics that allow for cellular uptake where they can be converted from liquid-phase PCCAs to gaseous microbubbles via ultrasound energy. Previously, we reported successful internalization of folate-targeted PCCAs in MDA-MB-231 breast cancer cells followed by ultrasound-mediated activation to produce internalized microbubbles. This study examines the binding, internalization and activation of folate-receptor targeted PCCAs in MDA-MB-231 breast cancer cells as a function of gaseous core compositions, incubation time and ultrasound exposure period. In vitro results indicate that internalization and ultrasound-mediated activation of PCCAs were significantly greater using a 50:50 mixture of decafluorobutane:dodecafluoropentane compared with other core compositions: 50:50 octafluoropropane:decafluorobutane (p < 0.0001), decafluorobutane (p < 0.04) and dodecafluoropentane (p < 0.0001). Furthermore, it was found that PCCAs composed of perfluorocarbons with higher boiling points responded with greater activation efficiency when exposed to 12 s of ultrasound exposure as opposed to 4 s of ultrasound exposure. When evaluating different incubation times, it was found that incubating the PCCAs with breast cancer cells for 60 min did not produce significantly greater internalization and activation compared with incubation for 10 min; this was concluded after comparing the number of microbubbles present per cell before ultrasound versus post-ultrasound, and finding a ratio of intracellular microbubbles post-ultrasound/pre-ultrasound, 3.46 versus 3.14, respectively. The data collected in this study helps illustrate further optimization of folate-receptor targeted PCCAs for breast cancer targeting and imaging.


Subject(s)
Breast Neoplasms/diagnostic imaging , Image Enhancement/methods , Microbubbles , Ultrasonography/methods , Cells, Cultured , Contrast Media , Female , Humans
9.
J Biomed Opt ; 23(4): 1-8, 2018 04.
Article in English | MEDLINE | ID: mdl-29633610

ABSTRACT

Surgical resection of pancreatic cancer represents the only chance of cure and long-term survival in this common disease. Unfortunately, determination of a cancer-free margin at surgery is based on one or two tiny frozen section biopsies, which is far from ideal. Not surprisingly, cancer is usually left behind and is responsible for metastatic disease. We demonstrate a method of receptor-targeted imaging using peptide ligands, lipid microbubbles, and multiphoton microscopy that could lead to a fast and accurate way of examining the entire cut surface during surgery. Using a plectin-targeted microbubble, we performed a blinded in-vitro study to demonstrate avid binding of targeted microbubbles to pancreatic cancer cells but not noncancerous cell lines. Further work should lead to a much-needed point-of-care diagnostic test for determining clean margins in oncologic surgery.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Lipids/chemistry , Microbubbles , Optical Imaging/methods , Pancreatic Neoplasms/diagnostic imaging , Cell Line, Tumor , Equipment Design , Humans , Models, Biological
10.
J Vasc Surg ; 68(6S): 105S-113S, 2018 12.
Article in English | MEDLINE | ID: mdl-29452833

ABSTRACT

BACKGROUND: Molecular imaging of carotid plaque vulnerability to atheroembolic events is likely to lead to improvements in selection of patients for carotid endarterectomy (CEA). The aims of this study were to assess the relative value of endothelial inflammatory markers for this application and to develop molecular ultrasound contrast agents for their imaging. METHODS: Human CEA specimens were obtained prospectively from asymptomatic (30) and symptomatic (30) patients. Plaques were assessed by semiquantitative immunohistochemistry for vascular cell adhesion molecule 1 (VCAM-1), lectin-like oxidized low-density lipoprotein receptor 1, P-selectin, and von Willebrand factor. Established small peptide ligands to each of these targets were then synthesized and covalently conjugated to the surface of lipid-shelled microbubble ultrasound contrast agents, which were then evaluated in a flow chamber for binding kinetics to activated human aortic endothelial cells under variable shear conditions. RESULTS: Expression of VCAM-1 on the endothelium of CEA specimens from symptomatic patients was 2.4-fold greater than that from asymptomatic patients (P < .01). Expression was not significantly different between groups for P-selectin (P = .43), von Willebrand factor (P = .59), or lectin-like oxidized low-density lipoprotein receptor 1 (P = .99). Although most plaques from asymptomatic patients displayed low VCAM-1 expression, approximately one in five expressed high VCAM-1 similar to plaques from symptomatic patients. In vitro flow chamber experiments demonstrated that VCAM-1-targeted microbubbles bind cells that express VCAM-1, even under high-shear conditions that approximate those found in human carotid arteries, whereas binding efficiency was lower for the other agents. CONCLUSIONS: VCAM-1 displays significantly higher expression on high-risk (symptomatic) vs low-risk (asymptomatic) carotid plaques. Ultrasound contrast agents bearing ligands for VCAM-1 can sustain high-shear attachment and may be useful for identifying patients in whom more aggressive treatment is warranted.


Subject(s)
Carotid Arteries/diagnostic imaging , Carotid Arteries/metabolism , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/metabolism , Molecular Imaging/methods , Plaque, Atherosclerotic , Ultrasonography , Vascular Cell Adhesion Molecule-1/analysis , Aged , Aged, 80 and over , Asymptomatic Diseases , Biomarkers/analysis , Carotid Arteries/pathology , Carotid Artery Diseases/complications , Carotid Artery Diseases/pathology , Cells, Cultured , Contrast Media/administration & dosage , Contrast Media/metabolism , Endothelial Cells/metabolism , Feasibility Studies , Female , Humans , Immunohistochemistry , Ischemic Attack, Transient/etiology , Ligands , Male , Microbubbles , Middle Aged , Predictive Value of Tests , Prognosis , Prospective Studies , Risk Factors , Rupture, Spontaneous , Stroke/etiology
11.
Photoacoustics ; 6: 26-36, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28507898

ABSTRACT

We demonstrate a versatile phase-change sub-micron contrast agent providing three modes of contrast enhancement: 1) photoacoustic imaging contrast, 2) ultrasound contrast with optical activation, and 3) ultrasound contrast with acoustic activation. This agent, which we name 'Cy-droplet', has the following novel features. It comprises a highly volatile perfluorocarbon for easy versatile activation, and a near-infrared optically absorbing dye chosen to absorb light at a wavelength with good tissue penetration. It is manufactured via a 'microbubble condensation' method. The phase-transition of Cy-droplets can be optically triggered by pulsed-laser illumination, inducing photoacoustic signal and forming stable gas bubbles that are visible with echo-ultrasound in situ. Alternatively, Cy-droplets can be converted to microbubble contrast agents upon acoustic activation with clinical ultrasound. Potentially all modes offer extravascular contrast enhancement because of the sub-micron initial size. Such versatility of acoustic and optical 'triggerability' can potentially improve multi-modality imaging, molecularly targeted imaging and controlled drug release.

12.
Article in English | MEDLINE | ID: mdl-27775902

ABSTRACT

Continued advances in the field of ultrasound and ultrasound contrast agents have created new approaches to imaging and medical intervention. Phase-shift perfluorocarbon droplets, which can be vaporized by ultrasound energy to transition from the liquid to the vapor state, are one of the most highly researched alternatives to clinical ultrasound contrast agents (i.e., microbubbles). In this paper, part of a special issue on methods in biomedical ultrasonics, we survey current techniques to prepare ultrasound-activated nanoscale phase-shift perfluorocarbon droplets, including sonication, extrusion, homogenization, microfluidics, and microbubble condensation. We provide example protocols and discuss advantages and limitations of each approach. Finally, we discuss best practice in characterization of this class of contrast agents with respect to size distribution and ultrasound activation.


Subject(s)
Contrast Media/chemistry , Fluorocarbons/chemistry , Microbubbles , Ultrasonography/methods , Particle Size
13.
J Control Release ; 243: 69-77, 2016 12 10.
Article in English | MEDLINE | ID: mdl-27686582

ABSTRACT

Breast cancer is a diverse and complex disease that remains one of the leading causes of death among women. Novel, outside-of-the-box imaging and treatment methods are needed to supplement currently available technologies. In this study, we present evidence for the intracellular delivery and ultrasound-stimulated activation of folate receptor (FR)-targeted phase-change contrast agents (PCCAs) in MDA-MB-231 and MCF-7 breast cancer cells in vitro. PCCAs are lipid-coated, perfluorocarbon-filled particles formulated as nanoscale liquid droplets capable of vaporization into gaseous microbubbles for imaging or therapy. Cells were incubated with 1:1 decafluorobutane (DFB)/octafluoropropane (OFP) PCCAs for 1h, imaged via confocal microscopy, exposed to ultrasound (9MHz, MI=1.0 or 1.5), and imaged again after insonation. FR-targeted PCCAs were observed intracellularly in both cell lines, but uptake was significantly greater (p<0.001) in MDA-MB-231 cells (93.0% internalization at MI=1.0, 79.5% at MI=1.5) than MCF-7 cells (42.4% internalization at MI=1.0, 35.7% at MI=1.5). Folate incorporation increased the frequency of intracellular PCCA detection 45-fold for MDA-MB-231 cells and 7-fold for MCF-7 cells, relative to untargeted PCCAs. Intracellularly activated PCCAs ranged from 500nm to 6µm (IQR=800nm-1.5µm) with a mean diameter of 1.15±0.59 (SD) microns. The work presented herein demonstrates the feasibility of PCCA intracellular delivery and activation using breast cancer cells, illuminating a new platform toward intracellular imaging or therapeutic delivery with ultrasound.


Subject(s)
Breast Neoplasms/metabolism , Contrast Media/administration & dosage , Drug Delivery Systems , Folate Receptors, GPI-Anchored/metabolism , Breast Neoplasms/diagnostic imaging , Cell Line, Tumor , Female , Fluorocarbons/chemistry , Humans , MCF-7 Cells , Microscopy, Confocal , Particle Size , Tissue Distribution , Ultrasonics/methods
14.
Biomed Opt Express ; 7(7): 2849-60, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27446711

ABSTRACT

The use of receptor-targeted lipid microbubbles imaged by ultrasound is an innovative method of detecting and localizing disease. However, since ultrasound requires a medium between the transducer and the object being imaged, it is impractical to apply to an exposed surface in a surgical setting where sterile fields need be maintained and ultrasound gel may cause the bubbles to collapse. Multiphoton microscopy (MPM) is an emerging tool for accurate, label-free imaging of tissues and cells with high resolution and contrast. We have recently determined a novel application of MPM to be used for detecting targeted microbubble adherence to the upregulated plectin-receptor on pancreatic tumor cells. Specifically, the third-harmonic generation response can be used to detect bound microbubbles to various cell types presenting MPM as an alternative and useful imaging method. This is an interesting technique that can potentially be translated as a diagnostic tool for the early detection of cancer and inflammatory disorders.

15.
DNA Repair (Amst) ; 43: 98-106, 2016 07.
Article in English | MEDLINE | ID: mdl-27130816

ABSTRACT

Non-Homologous End-Joining (NHEJ) is the predominant pathway for the repair of DNA double strand breaks (DSBs) in human cells. The NHEJ pathway is frequently upregulated in several solid cancers as a compensatory mechanism for a separate DSB repair defect or for innate genomic instability, making this pathway a powerful target for synthetic lethality approaches. In addition, NHEJ reduces the efficacy of cancer treatment modalities which rely on the introduction of DSBs, like radiation therapy or genotoxic chemotherapy. Consequently, inhibition of the NHEJ pathway can modulate a radiation- or chemo-refractory disease presentation. The Ku70/80 heterodimer protein plays a pivotal role in the NHEJ process. It possesses a ring-shaped structure with high affinity for DSBs and serves as the first responder and central scaffold around which the rest of the repair complex is assembled. Because of this central position, the Ku70/80 dimer is a logical target for the disruption of the entire NHEJ pathway. Surprisingly, specific inhibitors of the Ku70/80 heterodimer are currently not available. We here describe an in silico, pocket-based drug discovery methodology utilizing the crystal structure of the Ku70/80 heterodimer. We identified a novel putative small molecule binding pocket and selected several potential inhibitors by computational screening. Subsequent biological screening resulted in the first identification of a compound with confirmed Ku-inhibitory activity in the low micro-molar range, capable of disrupting the binding of Ku70/80 to DNA substrates and impairing Ku-dependent activation of another NHEJ factor, the DNA-PKCS kinase. Importantly, this compound synergistically sensitized human cell lines to radiation treatment, indicating a clear potential to diminish DSB repair. The chemical scaffold we here describe can be utilized as a lead-generating platform for the design and development of a novel class of anti-cancer agents.


Subject(s)
DNA End-Joining Repair/drug effects , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA/genetics , Ku Autoantigen/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Pyrimidines/pharmacology , Small Molecule Libraries/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Crystallography, X-Ray , DNA/metabolism , DNA Breaks, Double-Stranded , DNA-Activated Protein Kinase/chemistry , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Gamma Rays , Gene Expression , HeLa Cells , Humans , Ku Autoantigen/chemistry , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Molecular Docking Simulation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Domains , Protein Multimerization , Protein Structure, Secondary , Pyrimidines/chemical synthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Small Molecule Libraries/chemical synthesis
16.
Ultrasound Med Biol ; 41(5): 1422-31, 2015 May.
Article in English | MEDLINE | ID: mdl-25656747

ABSTRACT

Phase-change contrast agents in the form of nanoscale droplets can be activated into microbubbles by ultrasound, extending the contrast beyond the vasculature. This article describes simultaneous optical and acoustical measurements for quantifying the ultrasound activation of phase-change contrast agents over a range of concentrations. In experiments, decafluorobutane-based nanodroplets of different dilutions were sonicated with a high-pressure activation pulse and two low-pressure interrogation pulses immediately before and after the activation pulse. The differences between the pre- and post-interrogation signals were calculated to quantify the acoustic power scattered by the microbubbles activated over a range of droplet concentrations. Optical observation occurred simultaneously with the acoustic measurement, and the pre- and post-microscopy images were processed to generate an independent quantitative indicator of the activated microbubble concentration. Both optical and acoustic measurements revealed linear relationships to the droplet concentration at a low concentration range <10(8)/mL when measured at body temperature. Further increases in droplet concentration resulted in saturation of the acoustic interrogation signal. Compared with body temperature, room temperature was found to produce much fewer and larger bubbles after ultrasound droplet activation.


Subject(s)
Contrast Media/chemistry , Fluorocarbons/chemistry , Fluorocarbons/radiation effects , High-Energy Shock Waves , Nanoparticles/chemistry , Nanoparticles/radiation effects , Contrast Media/radiation effects , Dose-Response Relationship, Radiation , Materials Testing , Particle Size , Phase Transition , Radiation Dosage
17.
Phys Med Biol ; 59(2): 379-401, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24351961

ABSTRACT

Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an 'activate high' (8 MHz, 2 cycles), 'listen low' (1 MHz) scheme. Results show that the magnitude of the acoustic 'signature' increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques.


Subject(s)
Acoustics , Contrast Media/chemistry , Fluorocarbons/chemistry , Volatilization
18.
J Acoust Soc Am ; 134(2): 1473-82, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23927187

ABSTRACT

Ultrasound contrast agents are known to enhance high intensity focused ultrasound (HIFU) ablation, but these perfluorocarbon microbubbles are limited to the vasculature, have a short half-life in vivo, and may result in unintended heating away from the target site. Herein, a nano-sized (100-300 nm), dual perfluorocarbon (decafluorobutane/dodecafluoropentane) droplet that is stable, is sufficiently small to extravasate, and is convertible to micron-sized bubbles upon acoustic activation was investigated. Microbubbles and nanodroplets were incorporated into tissue-mimicking acrylamide-albumin phantoms. Microbubbles or nanodroplets at 0.1 × 10(6) per cm(3) resulted in mean lesion volumes of 80.4 ± 33.1 mm(3) and 52.8 ± 14.2 mm(3) (mean ± s.e.), respectively, after 20 s of continuous 1 MHz HIFU at a peak negative pressure of 4 MPa, compared to a lesion volume of 1.0 ± 0.8 mm(3) in agent-free control phantoms. Magnetic resonance thermometry mapping during HIFU confirmed undesired surface heating in phantoms containing microbubbles, whereas heating occurred at the acoustic focus of phantoms containing the nanodroplets. Maximal change in temperature at the target site was enhanced by 16.9% and 37.0% by microbubbles and nanodroplets, respectively. This perfluorocarbon nanodroplet has the potential to reduce the time to ablate tumors by one-third during focused ultrasound surgery while also safely enhancing thermal deposition at the target site.


Subject(s)
Contrast Media/chemistry , Fluorocarbons/chemistry , High-Intensity Focused Ultrasound Ablation/methods , Hot Temperature , Acrylamides/chemistry , Albumins/chemistry , High-Intensity Focused Ultrasound Ablation/instrumentation , Magnetic Resonance Imaging , Microbubbles , Nanoparticles , Phantoms, Imaging , Pressure , Sonication , Sound , Thermography , Time Factors , Transducers , Volatilization
19.
Phys Med Biol ; 58(13): 4513-34, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23760161

ABSTRACT

Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines.


Subject(s)
Emulsions/chemistry , Emulsions/radiation effects , Gases/chemistry , Microscopy, Video/methods , Nanoparticles/chemistry , Nanoparticles/radiation effects , Sonication/methods , Emulsions/analysis , Gases/analysis , Gases/radiation effects , High-Energy Shock Waves , Materials Testing/methods , Nanoparticles/ultrastructure , Phase Transition/radiation effects , Radiation Dosage
20.
Magn Reson Imaging ; 31(6): 900-10, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23583323

ABSTRACT

Dynamic Contrast Enhancement (DCE) MRI has been used to measure the kinetic transport constant, K(trans), which is used to assess tumor angiogenesis and the effects of anti-angiogenic therapies. Standard DCE MRI methods must measure the pharmacokinetics of a contrast agent in the blood stream, known as the Arterial Input Function (AIF), which is then used as a reference for the pharmacokinetics of the agent in tumor tissue. However, the AIF is difficult to measure in pre-clinical tumor models and in patients. Moreover the AIF is dependent on the Fahraeus effect that causes a highly variable hematocrit (Hct) in tumor microvasculature, leading to erroneous estimates of K(trans). To overcome these problems, we have developed the Reference Agent Model (RAM) for DCE MRI analyses, which determines the relative K(trans) of two contrast agents that are simultaneously co-injected and detected in the same tissue during a single DCE-MRI session. The RAM obviates the need to monitor the AIF because one contrast agent effectively serves as an internal reference in the tumor tissue for the other agent, and it also eliminates the systematic errors in the estimated K(trans) caused by assuming an erroneous Hct. Simulations demonstrated that the RAM can accurately and precisely estimate the relative K(trans) (R(Ktrans)) of two agents. To experimentally evaluate the utility of RAM for analyzing DCE MRI results, we optimized a previously reported multiecho (19)F MRI method to detect two perfluorinated contrast agents that were co-injected during a single in vivo study and selectively detected in the same tumor location. The results demonstrated that RAM determined R(Ktrans) with excellent accuracy and precision.


Subject(s)
Capillary Permeability/physiology , Fluorine Compounds/pharmacokinetics , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Models, Cardiovascular , Neoplasms, Experimental/metabolism , Neovascularization, Pathologic/metabolism , Animals , Computer Simulation , Contrast Media/pharmacokinetics , Female , Fluorine Radioisotopes , Image Enhancement/methods , Magnetic Resonance Angiography/standards , Metabolic Clearance Rate , Mice , Mice, SCID , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/pathology , Reference Values , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...